Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel

Das, Arpan and Tarafder, S (2009) Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel. International Journal of Plasticity, 25 (11). pp. 2222-2247.

[img]PDF
Restricted to NML users only. Others may use ->

2011Kb

Abstract

Formation and nucleation mechanisms (i.e. γ → ε, γ → α′, γ → deformation twins → ε → α′ and γ → ε → α′) of deformation- induced martensite (DIM) have been studied through analytical transmission electron microscopy (TEM) after tensile deformation of AISI 304LN stainless steel at various strain rates (SR) at room temperature (RT). Quantitative metallography has been employed extensively to assess martensitic transformation (MT) as function of strain and SR. It has been observed that the enhancement of SR during tensile deformation promotes the early formation of DIM, while suppressing its saturation value at fracture. Fracture surface morphologies and dimple geometries (i.e. dimple density, dimple diameter and dimple size distribution) have been quantified through image processing (IP) of tensile fractographs. It is noted that at lower SR, dimple density is high while dimple diameter is smaller, and vice versa. Concomitantly, the strength is noted to be low and ductility is high at lower SR, and vice versa. DIM has been found to be responsible for high dimple density at low SR. At high SR, MT is suppressed and hence low dimple density. The variation in SR dependent MT accounts for the variation in dimple metrics vis-à-vis tensile properties.

Item Type:Article
Official URL/DOI:http://dx.doi.org/10.1016/j.ijplas.2009.03.003
Uncontrolled Keywords:Deformation induced martensite; Strain rate; Image processing; Dimple density; Dimple diameter
Divisions:Material Science and Technology
ID Code:663
Deposited By:Sahu A K
Deposited On:02 Jun 2010 12:12
Last Modified:14 Dec 2011 12:43
Related URLs:

Repository Staff Only: item control page