Neuro-optimal control of an unmanned helicopter

Nodland, David and Ghosh, Arpita and Zargarzadeh, H and Jagannathan, S (2012) Neuro-optimal control of an unmanned helicopter. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology . pp. 1-14.

[img]PDF - Published Version
Restricted to NML users only. Others may use ->



Helicopter unmanned aerial vehicles (UAVs) can be extensively used for military missions as well as in civil operations,ranging from multi-role combat support and search and rescue, to border surveillance and forest fire monitoring. Helicopter UAVs are underactuated nonlinear mechanical systems with correspondingly challenging controller designs. This paper presents an optimal controller design for tracking of an underactuated helicopter using an adaptive critic neural network (NN) framework. The online approximator-based controller learns the infinite-horizon continuous-time Hamilton–Jacobi–Bellman (HJB) equation and then calculates the corresponding optimal control input that minimizes the HJB equation forward-in-time without using value and policy iterations. In the proposed technique, optimal tracking is accomplished by a single NN, which is tuned online using a novel weight update law. Stability analysis is performed and simulation results demonstrate the proposed control design.

Item Type:Article
Official URL/DOI:http://10.1177/1548512912450369
Uncontrolled Keywords:nonlinear optimal control, helicopter unmanned aerial vehicle (UAV), neural network (NN), online approximator (OLA),Hamilton–Jacobi–Bellman (HJB) equation, trajectory tracking
Divisions:Material Science and Technology
ID Code:6176
Deposited On:21 Nov 2012 10:46
Last Modified:21 Nov 2012 10:46
Related URLs:

Repository Staff Only: item control page