Development of Stretch Flangeable Grade Steels by Inclusion Engineering Approach

Mandal, G K and Kamaraj, A and Das, S K and Biswas, S K and Sarkar, R B and Bharathy, R S and Srivastava, V C (2018) Development of Stretch Flangeable Grade Steels by Inclusion Engineering Approach. Journal of Materials Engineering and Performance , 27(11) (IF-1.340). pp. 5622-5634.

Full text not available from this repository.

Abstract

The demand for good stretch flangeability in high-strength automotive steels has necessitated due attention on steel cleanliness and processes. The presence of elongated MnS stringers and centerline segregation of nonmetallic inclusions adversely affects the transverse mechanical property. In the present investigation, stretch flangeability of industrially produced steel, with and without Ca treatment, has been compared with Ti-added steel, produced at 40 kg scale without Ca treatment. The study brings out the influence of centerline segregation and modification of nonmetallic inclusions on HER performance. The microstructural analysis of industrial steel revealed that the method of hole formation (punching/drilling) determines crack initiation mechanism. The inclusions, along with the second phase present in the centerline, drive the crack propagation. An addition of Ti in liquid steel promotes formation of Al-Ti-O-based oxide, prior to MnS precipitation, during solidification and acts as nucleation site for MnS inclusion. This obviates the elongated stringer-type MnS inclusions. The centerline segregation-free Ti-modified steel, prepared at the laboratory scale, showed consistent HER property compared with industrial steel. It is also concluded that calcium treatment can be circumvented by modifying the sulfide stringer with the addition of Ti in the steel for further improvement in HER property.

Item Type:Article
Official URL/DOI:http://10.1007/s11665-018-3703-1
Uncontrolled Keywords:flangeability,stringer-type MnS,industrial steel,calcium treatment,sulfide stringer
Divisions:Material Science and Technology
ID Code:7932
Deposited By:Sahu A K
Deposited On:27 Feb 2019 16:12
Last Modified:12 Apr 2019 14:51
Related URLs:

Repository Staff Only: item control page