Chakrabarti, Kaushik and Sarkar, B and Ashok, V D and Das, K and Chaudhuri, S S and Mitra, A and De, S K (2014) Exchange bias effect in BiFeO3-NiO nanocomposite. Journal of Applied Physics, 115(1) (IF-2.185). 013906.
PDF Restricted to NML users only. Others may use -> 2084Kb |
Abstract
Ferromagnetic BiFeO3 nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO3/(100 - x) NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO3 nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO3 owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO3 nanocrystals. High Neel temperature (TN) of NiO leads to significant exchange bias effect across the BiFeO3/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO3 nanocrystals and NiO nanostructures. (C) 2014 AIP Publishing LLC
Item Type: | Article |
---|---|
Official URL/DOI: | http://dx.doi.org/10.1063/1.4861140 |
Uncontrolled Keywords: | Ferromagnet-Antiferromagnet Bilayers; Nio Nanoparticles; Thin-Films; Temperature; Dependence; Nanostructures; Multiferroics; Coercivity;Anisotropy; Asymmetry |
Divisions: | Material Science and Technology |
ID Code: | 6854 |
Deposited By: | Sahu A K |
Deposited On: | 24 Mar 2014 14:28 |
Last Modified: | 04 May 2016 12:45 |
Related URLs: |
Repository Staff Only: item control page