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A B S T R A C T   

Strain-induced metastable austenitic stainless steels form an important class of materials in metallurgical in
dustries for their wide range of applications. These steels undergo austenite-martensite phase transformation at 
temperatures above martensite start temperature, Ms, at which martensite is formed on mechanical deformation, 
also known as the Md temperature. Md temperature depends on several factors related to the steel and is 
important from alloy design perspective. In the literature, there are quite a few equations based on composition 
of the steels for the prediction of Md temperature. However, it is well known that the transformation from 
austenite to martensite is dependent on the austenite grain size as well as deformation conditions i.e. strain, 
strain rate and temperature of deformation. In the present work, the role of those parameters has also been 
considered. The model is implemented using fourteen input parameters viz., composition, grain size, amount of 
strain, temperature of deformation, and strain rate. The architecture of the neural network model is optimized 
rigorously to predict the Md temperature on a par with actual value. It has been shown that grain size and strain 
rate have very negligible influence whereas strain and temperature of deformation have quite strong role. Md 
temperature is increased with increasing strain whereas the temperature of deformation shows opposite 
dependence on it. An empirical equation thus, has been established to calculate the Md temperature of a steel as a 
function of its composition, grain size, temperature of deformation and strain. The final optimized model is then 
deployed to predict the Md temperature of different steels and predictions are found to be in close agreement to 
the experimentally measured Md temperatures. The developed model is general and can be extended to include 
other parameters as well as various other steel alloys.   

1. Introduction 

Austenitic stainless steels form an important class of engineering 
materials due to their good corrosion resistance and mechanical prop
erties. The strength/elongation ratio in austenitic steels can be adjusted 
within a wide range using mechanical deformation depending on its 
application design requirements. The austenite phase in these steels is 
metastable and can transform into a martensite phase at a temperature 
that is well above the martensite start temperature, Ms. The maximum 
temperature at which deformation-induced martensitic transformation 
can take place is known as the Md temperature. This deformation- 
induced austenite to martensite transformation depends on the charac
teristics of steel such as its composition, austenitic grain size, deforma
tion temperature, and strain [1]. 

The Md temperature of metastable austenitic stainless steel is an 
important alloy design parameter that is beneficial in providing a 
required combination of strength and ductility. It is broadly governed by 
the stability of the austenite phase and hence all the parameters that 
affect the austenite phase stability. The presence of C and Mn in steel 
drastically affects its Md temperature. This is because both C and Mn are 
austenite phase stabilizers i.e., it enhances the range of temperature over 
which austenite phase does not transform to martensite. Consequently, 
the Md temperature of the steel lowers and hence allows it to be ductile 
over a large range of temperatures. Similarly, N also stabilizes the 
austenite phase and helps in lowering the Md temperature of steel. The 
effect of C and N on the Md temperature is thought to be identical [2,3], 
but it has further been shown that the effect of C is comparatively more 
significant than N [4]. The presence of other elements such as Cr, Ni, Mo, 
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Si, Cu, Nb, and Ti also mechanically stabilizes the austenite phase, but 
their effect is comparatively low. Angel et. al. [2] established an equa
tion that empirically connects the Md temperature to the amount of 
various elements present in the steel alloy. This equation is further 
modified to include the effect of other elements as well [3,4]. 

While the presence of different elements affects the Md temperature 
of steel, austenitic grain size and processing conditions such as amount 
of strain, deformation temperature, and strain rate also play a significant 
role. Since the martensitic transformation is a result of diffusionless 
shear, it is strongly affected by applied stress. Thus, the Md temperature 
can also be altered by the application of strain. The applied strain can 
result in the formation of defects such as shear bands and dislocations 
within the austenite matrix that can act as nucleation sites for the 
martensitic transformation and thus raise the Ms temperature to the Md 
temperature [5]. Since the metastable austenitic steels undergo phase 
transformation during mechanical deformation, the determination of 
their physical and mechanical properties becomes a necessity for care
fully optimizing their processing parameters. Determining the Md tem
perature further becomes important to avoid any phase transformation 
during the secondary processing of steels for the manufacturing of 
finished products. To this end, we present a data-driven tool to study the 
effect of different elements and processing conditions on the Md tem
perature of metastable austenitic steel. 

Among various computational tools, a neural network algorithm is 
an efficient data-driven tool for predictive modeling and statistical 
analysis. It has found a tremendous application in the field of materials 
science, including metals [6,7], semiconductors [8] as well as polymeric 
materials [9]. This results in a new field called “Materials Informatics” 
which includes artificial neural networks (ANN) [10,11], and ensemble 
learning methods like decision trees [12], random forests [13], support 
vector machine (SVM) [14], and gradient boosting [15], among others. 
Machine learning techniques have been harnessed previously to predict 
the Ms temperature of different steel alloys [16–18]. A convolutional 
neural network approach has been employed in which microstructural 
images and composition are used to predict the Ms temperature of a 
medium Mn alloy steel [19]. Using a neural network model, Mirzadeh 
et. al. [20] modeled the volume fraction of strain-induced martensite 
formed in cold-worked AISI 304 stainless steels as a function of strain 
and deformation temperature. However, it does not include the effect of 
various elements present in the alloy on the volume fraction of 
strain-induced martensite. Considering the elemental composition, 
temperature, and strain, Mu et. al. [21] present the implementation of 
various ensemble machine-learning methods to predict the volume 
fraction of strain-induced martensite formed in alloy steel. However, 
their database is limited to AISI 200 series Mn alloyed and AISI 300 
series Ni alloyed austenitic stainless steels. 

Although significant efforts have been made to model the Ms tem
perature and the volume fraction of strain-induced martensite, modeling 
of the Md temperature has not been reported earlier. In this work, a 
linear supervised neural network model has been reported for predicting 
the Md temperature using material-specific parameters such as compo
sition, austenitic grain size (d), strain (εs), deformation temperature 
(Td), and strain rate (ε̇s). We have constructed a rich steel database from 
the existing literature which includes AISI 304, AISI 306, AISI 201, 
204Cu, and TRIP steels. The neural network model is optimized, trained, 
and tested to efficiently predict the Md temperature of steel using its 
parameters. Additionally, an empirical equation for the determination of 
Md temperature has been established by implementing the feature 
importance of different elements present in the steel and its processing 
conditions. 

2. Modeling the Md temperature 

Md temperature of steel is a function of different parameters such as 
its composition, grain size, amount of strain to which the steel is sub
jected to, deformation temperature, and strain rate [22]. It is modeled 

using a data-driven many-to-one supervised neural network model. The 
aforementioned parameters about a wide range of steels, which undergo 
strain-induced martensitic transformation, are collected along with their 
corresponding Md temperatures. The collected data is reviewed, 
cleaned, and subjected to exploratory data analysis to understand the 
correlation between different parameters as well as the importance of 
each of the parameters on the Md temperature. This provides a pre
liminary data analysis on strong or weak dependence of different ele
ments and other mechanical parameters such as grain size, deformation 
temperature, and strain on the Md temperature. 

In the next step, the database is normalized and fed into a supervised 
neural network model for the prediction of Md temperature. The neural 
network model is a many-to-one linear model whose architecture is 
further optimized in the process. The optimized architecture is selected 
based on the performance criteria of the model i.e., the degree of fitting 
of the model in predicting the Md temperatures of different steel alloys. 
Although, once a neural network is trained it can be used to make 
frequent predictions of Md temperatures of new steel samples. The final 
trained neural network model is then used to make predictions of the Md 
temperatures and its performance is quantitatively analysed. Finally, 
using the trained network model, physical correlations and insights are 
obtained and an empirical equation for the calculation of Md tempera
ture has been established. The equation aims to relate the Md temper
ature to the composition of different alloying elements present in the 
steel along with other parameters. A general overview of the workflow is 
presented in Fig. 1. 

2.1. Dataset preparation 

The dataset used in this study is prepared from the existing literature 
encompassing a wide range of steel alloys with varying elemental 
composition and mechanical processing parameters [1,23–75]. These 
include AISI 304, AISI 306, AISI 201, 204Cu, and TRIP steels. In the 
dataset, apart from composition, we also consider the initial austenitic 
grain size, deformation temperature, strain at which 50 % martensitic 
transformation occurs, and the applied strain rate. The data has been 
extensively collected for tensile testing and deformation during metal 
forming that induces martensitic transformation. Since the strain rates 
are not always available in the literature, most of the collected data are 
not considered in this work. This, in turn, leads to a significant reduction 
in the volume of data that is used in this work. This is followed by data 
cleaning to ensure that the insufficient entries of data and the errors in 
the original dataset have been corrected. The final dataset consists of a 
total of 193 data points which is used in this work for further analysis. 

2.1.1. Composition 
The composition of different elements present in steel dictates its 

final properties such as strength, ductility, toughness, etc. For example, 
the 204Cu austenitic stainless steel has good formability due to the 
addition of Cu while the addition of Cr and Ni provides corrosion 
resistance quality to the AISI 304 stainless steels. Thus, the amount of 
different elements present is of vital importance and is collected for a 
wide range of steel. As different steels have different elemental com
positions, during the data collection process the composition of some of 
the elements such as N, Ti, and Nb are not reported. In those cases, since 
the amount of N present in steel is very low, the composition of N is 
taken as zero. Similarly, the samples in which the composition of Nb and 
Ti are not found are taken as zero given their small presence in the re
ported literature. 

The composition distribution range for different elements is pre
sented in Table 1. The data count of all the elements included in the 
dataset has been plotted as a histogram distribution shown in Fig. 2. 
Although the composition of C ranges to 0.17 most of the collected data 
has a low presence of carbon. The concentration of Mo and Cu content is 
mostly limited to less than 1 wt% with a few samples having more than 
that in the steel composition. The composition of N and Si is limited to 
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0.25 and 1.2 wt%, respectively. Further, it can be observed that Ni has 
an extensive range of composition distribution varying from around 
2–13 wt%, whereas the distribution of Cr is minimal and is mainly 
present in the range of 14–19 wt%. Mn content is mostly concentrated 
between 1 – 2 wt% with a few data points between 6 and 9 wt%. 

2.1.2. Grain size, amount of strain, deformation temperature, and strain 
rate 

The dependence of martensite start temperature on grain size, 
amount of strain, deformation temperature, and strain rate has been 
studied previously [4,20,76–79]. In general, it is observed that the 
strain-induced martensite start temperature decreases with a decrease in 
grain size [80]. However, small grain size mainly in the range 1–100 μm 
has negligible effect on the martensite formation temperature [76]. The 
effect of grain size on the Md temperature is related to the fact that grain 
boundaries in annealed austenite provide the necessary nucleation 
ground for martensite formation. The austenite phase is stable at 
elevated temperatures which is difficult to transform into martensite and 
thus reduces the martensite formation temperature [79]. However, 
increasing the amount of strain increases the volume of transformed 
martensite and thus brings up the martensite start temperature. This is 
attributed to the fact that with an increase in strain, the formation of 
shear band accelerates which, in turn, increases the kinetics of 
strain-induced martensite formation [77]. Formation of shear bands and 
interaction between them is higher in coarse grains and that also leads to 
faster kinetics of transformation of austenite to martensite. 

The collected data of steels has a wide range of grain size, amount of 
strain, deformation temperature, and strain rate. The grain size ranges 
from 0.5 μm to 285 μm as shown in Table 1. The amount of strain varies 
from 0.22 % to 166.73 %. The collected data samples also show defor
mation over a wide range of temperatures from − 269oC to 80oC and to a 
strain rate of up to 200s− 1. 

Fig. 1. Schematic flowchart enlisting different stages of this work.  

Table 1 
Data summary compiled from literature survey. It consists of compositions of 
various elements, grain size, amount of strain, deformation temperature, strain 
rate, and Md temperature.  

Parameter Mean Standard deviation Minimum Maximum 

C(wt%)  0.04  0.033  0.001  0.17 
Mn(wt%)  2.60  2.60  0.67  17.60 
Cr(wt%)  17.16  1.78  0.0  19.08 
Ni(wt%)  7.56  2.55  0.0  13.48 
Mo(wt%)  0.46  0.82  0.0  4.80 
N(wt%)  0.05  0.06  0.0  0.24 
Si(wt%)  0.50  0.29  0.2  3.22 
Cu(wt%)  0.18  0.38  0.0  3.21 
Nb(wt%)  0.003  0.01  0.0  0.09 
Ti(wt%)  0.03  0.10  0.0  0.67 
d (μm)  32.40  38.68  0.5  285.0 
εs  44.68  30.45  0.22  166.73 
Td(oC)  -16.09  74.85  -269.0  80.0 
ε̇s(s− 1)  4.46  24.27  0.0  200.0 
Md(oC)  29.97  32.57  -66.51  221.41  

Fig. 2. Histograms showing the composition distribution range with its corresponding number of counts for various elements considered.  
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2.1.3. Md temperature 
Md temperature is an important factor from the perspective of alloy 

design and development. It affects the final properties of steel using 
strain-induced martensitic transformation from the austenite phase. In 
contrast to lower austenite stability, higher austenite stability leads to 
the formation of strain-induced martensite with high strength and 
ductility [81]. This phenomenon plays a major role in the final product 
performance and is considered a major criterion (Trans
formation-induced plasticity, TRIP) for alloy development. Beyond Md 
temperature, there will not be any transformation under mechanical 
deformation. 

As previously mentioned, the Md temperature of steel depends on its 
elemental composition and different mechanical properties. Several 
equations relating the Md temperature of a steel alloy to its elemental 
composition have been proposed in the literature and are an active area 
of research. According to Angel [2], the Md temperature is related to the 
elemental composition of steel as shown in Eq. (1) 

Md30(K) = 686 − 462(%C+%N) − 9.2%Si − 8.1%Mn − 13.7%Cr
− 9.5%Ni − 18.5%Mo

(1)  

where Md30 is the temperature corresponds to the formation of 50 % 
martensite by volume at a strain of 0.3 in austenitic stainless steels and 
all the elements are in weight percentage. The equation is further 
modified by Nohara et al. [3] by adding the influence of Nb content on 
Md temperature as shown in Eq. (2) 

Md30
( oC

)
= 551 − 462(%C+%N) − 9.2%Si − 8.1%Mn − 13.7%Cr

− 29(%Ni+%Cu) − 18.5%Mo − 68%Nb–1.42(Gs–8)
(2)  

where Gs is the ASTM grain size number, and all the elements are in 
weight percentage. It shows that with decreasing ASTM grain size the Md 
temperature of a steel increases. 

In both equations, it can be observed that the Md temperature is 
strongly dependent on the composition of various elements that are 
present in the steel. The presence of C and N heavily influences the Md 
temperature as compared to other elements as their addition stabilizes 
the austenite phase and thus depresses the Md temperature. It can be 
observed from Eqs. (1) and (2) that the effect of C and N content on the 
Md temperature of steel is identical. However, Masumura et. al. [4] 
presented a modified equation, Eq. (3), in which it is shown that the 
effect of C content on the Md temperature is more significant than N. In 
other words, C stabilizes the austenite phase in steel by depressing the 
Md temperature to a greater extent than N. 

Md30(K) = 800 − 333
̅̅̅̅̅̅̅
Ceq

√
− 10.3%Si − 12.5%Mn − 10.5%Cr − 24.0%Ni

− 5.6%Mo;Ceq = %C+ a%N; a = 0.931 − 0.000281exp(0.0219T)
(3)  

where Ceq represents C equivalent which essentially consists of C and N 
composition, and T is the temperature. 

The effect of other parameters such as the grain size, amount of 
strain, deformation temperature, and strain rate on the Md temperature 
has also been studied extensively. Deformation carried out at elevated 
temperatures results in stabilizing the austenitic phase present in steel 
and consequently reduces the Md temperature [79]. Strain also plays an 
important part in dictating the Md temperature and the amount of 
martensite formed. For instance, with an increase in the strain level, the 
volume fraction of transformed martensite increases [82]. This is mainly 
because there is an increase in the formation rate of the shear band with 
increasing strain which accelerates the kinetics of strain-induced 
martensite in steel [77]. However, on the contrary, it is observed that 
the transformation of martensite is suppressed with an increase in the 
applied strain rate [78]. 

Thus, it can be seen that the Md temperature of steel depends on 
several factors such as the elemental composition, grain size, deforma

tion temperature, and strain effects. This makes it important to consider 
these parameters and to study their effect on the Md temperature. For 
each data point collected, a careful inspection is carried out to include as 
many parameters as possible available in the literature. In a few cases, 
the austenitic grain size has not been reported in the literature. For those 
cases, efforts have been made to measure the grain size from the cor
responding reported microstructure in the literature using the linear 
intercept method. Furthermore, in some work, the Md temperature is not 
explicitly mentioned. However, the composition of different elements is 
reported and thus, the Md temperature is calculated using an empirical 
equation for the same from the literature. In the final database, the value 
of Md temperature varies from a minimum of − 66.51 to a maximum of 
221.41oC. 

2.2. Exploratory data analysis 

The final database consists of compositions of various elements, 
grain size, amount of strain, deformation temperature, strain rate, and 
Md temperatures of all 193 different steel samples. The detail regarding 
the compiled database is summarized in Table 1. The collected data of 
the samples are of low-carbon steels with carbon composition varying 
from a minimum of 0.001 % to a maximum of 0.17 %. As mentioned 
earlier, the Md temperature of the collected data varies between − 66.51 
and 221.41oC. 

To get insights into the correlation between different pairs of pa
rameters, the dataset is represented using a Pearson correlation matrix 
in Fig. 3. The diagonal elements represent self-correlation, and thus all 
the diagonals have a value of one. The off-diagonal terms represent the 
correlation between different pairs of parameters. It is needless to state 
that the upper diagonal terms are the same as the lower diagonal terms 
for correlation between the corresponding pair of parameters. The cor
relation range varies from − 1 to 1. A positive value represents the 
positive correlation between a pair i.e., an increase in the value of one 
parameter will likely increase the value of another parameter and vice 
versa. A zero correlation between a pair means the parameters are not 
related and a change in one of the parameters will not affect the other 
parameter. The correlation coefficient between two parameters, p and q, 
in the dataset can be calculated using Eq. (4) 

corr(pq) =
1

n − 1
∗

∑n

i=1
(pi − p) ∗ (qi − q)

σp∗σq
(4)  

where n is the total number of data points, i and j varies from 1 to n, pi 

and qi are the ith data point, and p and q are the mean values of variable p 
and q with standard deviation σp and σq respectively. 

It is observed from Fig. 3 that C and N are strongly negatively 
correlated to the Md temperature i.e., an increase in C or N content will 
likely reduce the Md temperature of the steel. In other words, the 
addition of C and N stabilizes the austenite phase in the steel by 
depressing the Md temperature. The strong dependence of mechanical 
stability of austenite phase on C and N content in steel is consistent with 
the previous findings in the literature [2–4]. Elements such as Cr, Ni, 
Mo, and Nb also show a negative correlation with Md temperature of the 
steel. Mn and Si content in steel shows a slight positive correlation with 
Md temperature which is in contrast difference with previous findings in 
the literature [2–4]. However, the correlation is not strongly positive 
and thus can arguably be approximated to be insignificant as compared 
to other elements. The effect of Cu and Ti content on the Md temperature 
of steel is insignificant as the correlation value of these two elements 
with Md temperature is very close to zero (Fig. 3). Further, the effect of 
austenitic grain size on the Md temperature is also very weak. According 
to Matsuoka et al., the Md temperature of a Fe-16 %Cr-10 %Ni alloy is 
not affected when the austenitic grain size is between 1 and 100 µm 
[76]. From Table 1, the maximum grain size of the collected sample is 
285 µm. However, most of the samples have grain sizes smaller than 

A.K. Thakur et al.                                                                                                                                                                                                                              



Materials Today Communications 39 (2024) 109016

5

100 µm, and only 7 out of 193 samples have grain sizes greater than 
100 µm. This explains the observed weak correlation between austenitic 
grain size and Md temperature in Fig. 3. Finally, it is observed that the 
Md temperature is negatively correlated with the amount of strain and is 
not significantly correlated with the deformation temperature and strain 
rate. On the contrary, it has been previously reported that with an in
crease in the strain amplitude, the amount of deformation-induced 
martensite also increases [82]. The observation of the correlation of 
strain with Md temperature from Fig. 3 is mainly due to the small size of 
the database and the scarcity of data in the literature. 

To further explore the interdependence of different parameters, the 
compiled database has been represented with pair plots using the sea
born visualization library [83] in Fig. 4. From Fig. 4(a) and (b), it can be 
observed that low C and N content affects the Md temperature of steels 
more significantly when compared to higher concentrations of the same. 
This is consistent with the findings of Masumura et. al. [84] in which the 
C and N show a significant effect on the Md temperature when their 
concentration is less than 0.1 %. Elements such as Mn, Mo, Si, Cu, Nb, 
and Ti also affect the Md temperature when their concentrations are low. 
On the other hand, the Md temperature is affected by the higher con
centrations of Cr and Ni in the steel. Further, smaller austenitic grain size 
affects the Md temperature more when compared to the larger austenitic 
grain size as is evident from Fig. 4(c). A large range of the amount of 
strain and deformation temperature also affects the Md temperature. 

2.3. Supervised neural network model 

The database is randomly divided into around 80 % and 20 % for 

training and test datasets respectively. The training dataset consists of 
153 data points whereas the test dataset consists of 40 data points. 
Further details regarding these datasets such as mean, standard devia
tion, minimum, and maximum values are provided in the supplementary 
information as Table 1 and 2 for training and test datasets respectively. 

2.3.1. Data normalization 
Since the present work involves multi-dimensional data and the 

range of these are significantly different, data normalization becomes 
important. It is crucial to pass the collected data from a normalization 
filter to bring the range of all the data to a common platform. This results 
in weighing off the dominance of any largely positive or largely negative 
data in the dataset. It also helps the system converge to the global 
minima during neural network training. The data is normalized using 
Eq. (5) 

dN =
di − dmin

dmax − dmin
(5)  

where dN is the normalized data, di is the ith data in the database, and 
dmin and dmax are the minimum and maximum data in the database 
respectively. Using Eq. (5), all the data will be normalized in the range 
[0,1]. This normalized data is then fed into the neural network for 
training and testing purposes. Further, output from the neural network 
will be de-normalized using the inverse of Eq. (5) to bring it to the 
original scale. 

Fig. 3. A Pearson correlation matrix showing the correlation between different pairs of parameters.  
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2.3.2. Activation function and Loss calculation 
Since all the data is normalized in the range [0− 1], two activation 

functions viz., Rectified Linear Unit (ReLU) and sigmoid function, are 
explored for use in the neural network architecture. These two functions 
are given in Eqs. (6) and (7) and their variation is shown in Fig. 5. 

ReLU : f (x) =
{

0, x < 0
x, x ≥ 0 (6)  

Sigmoid : f (x) =
1

1 + e− x, − ∞ < x < ∞ (7) 

Passing all the values in a neural network model to an activation 
function facilitates the model to learn the multi-dimensional pattern 
between input parameters and the Md temperature as the model tries to 
match the output closely. The choice of activation function(s) depends 
on the neural network architecture and input values. The ReLU activa
tion makes all the negative input values zero and yields the same value 
for all positive input values including zero. Thus, the output range of the 
ReLU activation is [0, ∞]. On the other hand, the sigmoid activation 

function has a symmetric S-shaped curve around zero with asymptotic 
behaviour close to 0 and 1 as shown in Fig. 5. Effectively, the sigmoid 
activation scales all the input values in the range [0,1]. Since the 
normalized input data is used to train the neural network model, the 
output range of the data using either ReLU or sigmoid activation func
tion is [0,1]. 

As explained earlier, fourteen parameters defining steel’s charac
teristics are first normalized and then passed through the input nodes of 
a supervised neural network model. The output of the network contains 
just one node and is treated as the normalized Md temperature. This Md 
temperature, calculated from the neural network, will have some ex
pected deviation from the corresponding actual Md temperature which is 
collected from the literature. This is due to the generalization nature of 
the neural network algorithms. The deviation or loss of the calculated 
Md temperature should be quantified with respect to the corresponding 
actual Md temperature to monitor the performance of the neural 
network training process. This is carried out using the mean-squared 
error (MSE) loss given in Eq. (8) 

Fig. 4. Pair plot between (a) C, Mn, Cr, Ni, Mo, and Md, (b) N, Si, Cu, Nb, Ti, and Md, and (c) d, εs, Td, ε̇s, and Md.  
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MSELoss =
1
n
∑n

i=1

(
ya − yp

)2 (8)  

where n is the total number of datapoints, i ranges from 1 to n, ya is the 
actual data, and yp is the predicted data. The MSE loss in the prediction 
from a neural network is expected to decrease as the number of training 
cycles increases i.e., as the network learns from the training data. 
Another metric that is used to quantify the network loss is the mean 
absolute error (MAE) which is presented in Eq. (9) 

MAELoss =
1
n
∑n

i=1

⃒
⃒ya − yp

⃒
⃒ (9)  

where the symbols have the same meanings as specified above. Both 
MSE and MAE loss were used during the training and testing to quantify 
the performance of the neural network models and monitor the outliers. 
With activation and loss functions defined, the choice of the number of 
hidden layers and the number of neurons in each of the hidden layers is 
discussed in the sections below. 

2.3.3. One-layered neural network model 
Given the fourteen input parameters and one output parameter, a 

simple neural network model with one hidden layer has been initiated to 

train the data. Initially, the hidden layer consists of neurons with some 
random numeric weights that adjust during the training process to best 
match the actual output. The number of neurons in the hidden layer is 
not fixed and depends on various parameters such as the number of 
input and output nodes, amount of data points, and the number of 
hidden layers. With a smaller number of neurons, the neural network 
might not be able to map all the data points and thus might not be 
trained properly. On the other hand, using a lot of neurons in the hidden 
layer can be computationally expensive and can also result in data 
overfitting [85]. Thus, the objective here is to find the optimal number 
of neurons in the hidden layer that yields minimum network loss i.e., 
MSE and MAE loss. In other words, with the optimal number of neurons 
in the hidden layer, the difference between the neural network predicted 
Md temperature and the actual Md temperature should be as low as 
possible. This is performed by systematically varying the number of 
neurons in the hidden layer from 1 to 20. For each case, the network loss 
is recorded after training the network to 2000 epochs. Moreover, both 
activation functions viz., ReLU and sigmoid have been considered on all 
the values coming after passing through the hidden layer. 

Fig. 6(a) and (b) show the variation of MSE and MAE loss with the 
number of neurons in the hidden layer when ReLU and sigmoid acti
vation functions are used respectively. Using the ReLU activation, as 
shown in Fig. 6(a), the overall network loss trend shows an increase with 
the increase in the number of neural nodes present in the hidden layer. 
The lowest MSE and MAE loss is 0.16 and 0.28, respectively, and is 
observed when the hidden layer consists of 6 neurons as shown in Fig. 6 
(a). In this case, the network seems to be unstable which is also reflected 
from the uneven loss spikes in the curve. 

On the other hand, using the sigmoid activation, the overall network 
loss shows a decreasing trend with increasing the number of neurons as 
shown in Fig. 6(b). However, the variation in loss with an increase in the 
neural nodes is not significant and thus points towards a loss saturation. 
In this case, the minimum MSE and MAE loss is 0.02 and 0.13, respec
tively, and is observed when the number of neurons in the hidden layer 
is 13. Finally, on comparing both cases, it is observed to have a low MSE 
and MAE loss of the network with 13 neurons in the hidden layer with 
sigmoid activation function when compared to the network with 6 
neurons in the hidden layer with ReLU activation function. 

2.3.4. Two-layered neural network model 
To further explore the performance of the neural network model, 

another hidden layer has been added after the first one. To optimize the 
number of neurons in the second hidden layer, a similar procedure was 
followed as explained in Section 2.3.3. In the first case, the number of 
neurons has been fixed to 6 in the first hidden layer, and systematically 

Fig. 5. ReLU and sigmoid activation functions.  

Fig. 6. Training loss variation with number of neurons in a one-layered neural network model using (a) ReLU and (b) sigmoid activation function.  
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vary the number of neurons from 1 to 20 in the second hidden layer. 
Further, in this case, ReLU activation has been used in both the hidden 
layers. Fig. 7(a) shows the mean squared and mean absolute error loss as 
a function of number of neurons in the second hidden layer. The mini
mum MSE and MAE loss in this case are 0.09 and 0.24, respectively, and 
is observed when the number of neurons in the second hidden layer is 
17. The overall trend of the network loss decreases with an increase in 
the number of neurons in the second hidden layer. However, the uneven 
spikes in the network loss reflect that this neural network state is not 
very stable. 

In the second case, the number of neurons in the first hidden layer 
has been fixed to 13 and the number of neurons in the second hidden 
layer has been varied. Sigmoid activation is implemented after both the 
hidden layers. The variation of network loss with the number of neurons 
in the second hidden layer in this case is shown in Fig. 7(b). Based on the 
network loss, the optimal number of neural nodes to consider in the 
second hidden layer is found to be 7 with the corresponding MSE and 
MAE loss are 0.19 and 0.35, respectively. The network loss in this does 
not fluctuate much and seems to saturate with the increasing number of 
neurons in the second hidden layer. 

In the last case, the number of neurons in the first and second hidden 
layers has been fixed to 13 and 7, respectively based on previous find
ings. Further, different combinations of ReLU and sigmoid activation are 
applied after the first and second hidden layers. The minimum loss, in 
this case, is observed when sigmoid activation is applied after the first 
hidden layer and ReLU activation is applied after the second hidden 
layer. The corresponding minimum MSE and MAE loss are 0.20 and 
0.38, respectively. Fig. 7(c) shows the variation of network loss as a 
function of number of neurons in the second hidden layer. In this case, 
the network is stable with a smaller fluctuation in the loss as a function 
of the number of neurons. 

The optimized neural network architecture consists of an input, two 
hidden, and an output layer. The input layer consists of 14 neurons to 
take the parameters that characterize different steel. The first hidden 
layer consists of 13 neurons followed by a sigmoid activation function. 
The second hidden layer consists of 7 neurons followed by a ReLU 
activation. The final output will be collected at the output node 
providing Md temperature of the steel. The schematic architecture of the 
optimized neural network is shown in Fig. 8. Given the small size of the 
dataset with only 193 total data points, increasing the number of hidden 
layers might not be beneficial and can lead to data overfitting. More
over, a shallow neural network is preferred over a deep neural network 
in the case of a small dataset [86]. 

2.3.5. Optimizing learning rate 
Learning is an important parameter of a neural network model that 

determines the rate at which the model will attain the optimized weights 

of the neurons. The training of the neural network model starts with 
some random numerical weights assigned to each neuron in both the 
hidden layers. As the training progresses, the model tries to match the 
predicted Md temperature with the actual Md temperature and quantifies 
it using Eqs. (10) and (11). After each epoch, the model adjusts the 
weights assigned to different neurons in such a way that the error is as 
low as possible. For this procedure, it uses a well-known gradient 
descent algorithm [87] which is expressed mathematically in Eq. (10). 

wnew = wold − α dL
dwold

(10)  

where wold and wnew are the old weights and new weights of the neurons 
in the hidden layer, L is the loss function, and α is the learning rate. A 
large value of α can lead to a situation in which there is a drastic change 
in the weights of the neurons. In this condition, the neural network 
model can skip the optimal weights of the neurons. On the other hand, a 
small value of α will require the neural network to perform many iter
ations so that the weights of neurons will converge to optimal values. 
Thus, defining the α of a neural network model is an optimization pro
cess that is critical for its performance. 

To optimize the α, the performance of the neural network model was 
recorded by systematically varying the α. The performance of the model, 
in terms of mean squared and mean absolute error is presented in Fig. 9 
as a function of α. It can be observed from Fig. 9 that with an increase in 
learning rate, the MSE as well as MAE loss of the neural network rises 
significantly. This explains the condition where the weights of the 
neurons in the neural network model change drastically, and the model 
is not able to find the optimal set for the same. At lower values of α, the 
network loss is significantly low. The lowest value of MSE and MAE is 
0.03 and 0.14 which is obtained when the α is set to 0.001. Although, an 
adaptive learning rate can also be implemented in training a neural 
network model which changes as the training progresses, in this work 
the learning rate has been fixed to 0.001. 

3. Results and discussion 

The final neural network architecture implemented in the prediction 
of Md temperature contains 14 input nodes, and two hidden layers with 
the first hidden layer containing 13 neurons followed by sigmoid acti
vation and the second hidden layer containing 7 neurons followed by 
ReLU activation, 1 output neuron, and a learning rate of 0.001. It is 
implemented using a simple regression-based linear neural network 
model written in Python using the PyTorch framework [88]. Seaborn 
[83] and Matplotlib [89] computer software packages are used for 
plotting and visualization. 

Fig. 7. Training loss variation with the number of neurons in a two-layered neural network model using (a) ReLU activation in both hidden layers, (b) Sigmoid 
activation in both hidden layers, and (c) Sigmoid in the first and ReLU in the second hidden layer. 
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3.1. Model training 

The final optimized neural network model shown in Fig. 8 is trained 
for ten thousand epochs using the training dataset. The trained model 
after each epoch is used to evaluate its performance on the test dataset. 
The training and test performance of the model is measured in terms of 
MSE loss on both datasets. The variation of MSE loss as a function of 
epochs is shown in Fig. 10 for the first five thousand epochs. Since the 
training starts with random weights assigned to each neuron in both the 
hidden layers, the initial loss of the neural network is large. It can be 
observed that the training, as well as the test loss, decreases with 
increasing number of epochs. This represents that the neural network 
model is trained from the input parameters to predict the Md tempera
ture close to the actual Md temperature with each epoch. The training 
test loss of the network after ten thousand epochs is 4.14 × 10− 5 and 
3.56 × 10− 5 respectively which is reasonably good. It is worth noting 
that at this point both the actual and predicted Md temperature is 
normalized. It should be denormalized further using the inverse of Eq. 
(3) to have a meaningful comparison between the actual and predicted 
Md temperatures. 

3.2. Performance evaluation 

The state of the trained model after ten thousand epochs is then used 

Fig. 8. Neural network architecture with fourteen input neurons, thirteen neurons in the first hidden layer, seven neurons in the second hidden layer, and one 
output neuron. 

Fig. 9. The variation of mean squared and mean absolute error of the neural 
network model with different learning rates. 
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for the prediction of Md temperature using the input parameters of the 
training as well as the test dataset. The accuracy of the trained model is 
evaluated by comparing the true Md temperature and the model- 
predicted Md temperature after denormalization as shown in Fig. 11. 
Each dot represents the actual Md temperature of a steel and its corre
sponding neural network predicted Md temperature. The figures show an 
ideal line (in solid blue) with slope 1 and the data (represented by the 
dots) falling on this line will have an accurate prediction for the Md 
temperature. However, since the neural network is a generalization al
gorithm, there is an expected departure of the predicted Md temperature 
from the corresponding actual Md temperature. Fig. 11(a) and (b) show 
the actual and the corresponding predicted Md temperatures for training 
and test datasets, respectively. Although not ideal, most of the values fall 
along the ideal line shows the neural network is well trained and can 
make acceptable predictions. Moreover, a linear fit of the training and 
test data prediction provides a slope of 0.99 and 0.98, respectively 
which is very close to the ideal line. This further reinforces the perfor
mance of the trained neural network model and its applicability to 
predict the Md temperature of different steel samples to a reasonable 
accuracy. 

Fig. 12(a) and (b) show the error in the predicted Md temperature 
with respect to the actual Md temperature using a bar plot for all the 
samples in training and test datasets, respectively. It can be observed 

that for both training and test datasets, the error in Md temperature 
predictions can either be positive or negative. From Table 1 it can be 
observed that the Md temperature varies in the range [-66.51oC, 
221.41oC] in the initial database. For the training dataset, the error in 
the predicted Md temperatures with respect to their corresponding 
actual Md temperatures are in the range [-7.22oC, 6.64oC]. For the test 
dataset, this error is in the range [-6.04oC, 4.27oC]. This shows that the 
model prediction of the Md temperatures is in good agreement with the 
corresponding actual Md temperatures. 

3.3. Neural network generated equation and its physical interpretation 

As explained earlier, the final Md temperature depends on several 
parameters related to the corresponding steel composition. Thus, efforts 
have been made to establish an empirical equation that relates the Md 
temperature of steel to its parameters using the final trained neural 
network model. Since the final Md temperature is a function of 14 input 
parameters, the corresponding weights of these nodes present in the 
neural network model are used to calculate their corresponding co
efficients. This further provides us with an idea of feature importance 
and their effect on the Md temperature. In general, the feature impor
tance of each input parameter is calculated by measuring the change in 
the network prediction error against a given change in the feature value 
[66]. The features which drastically affect the network’s error are 
considered relatively more significant than others. On the contrary, a 
feature is supposed to be less significant if it does not reflect a drastic 
change in the network prediction error on changing its value. 

The calculated empirical equation from the trained neural network 
using the mean impact value is shown in Eq. (11) 

Md
( oC

)
= 412 − 462[%C +%N] − 9.2%Si − 8.0%Mn − 13.7%Cr

− 9.5%Ni − 0.15%Cu − 18.65%Mo+ 0.01d − 0.0067(Td − εs)
(11) 

It is evident from the coefficients of different elements in Eq. (11) 
that the composition of C and N in the steel strongly affects the Md 

temperature. They are followed by the importance of the rest of the 
elemental composition present in the steel. The grain size has a weak 
influence on the Md temperature. Also, mechanical processing condi
tions such as the temperature of deformation, strain, and strain rate have 
almost negligible influence on the Md temperature. This equation has no 
coefficient for strain rate, which implies that the strain rate does not play 
any role in deciding the Md temperature. 

The calculated empirical equation, Eq. (11), from the trained neural 
network model, is similar to the equations provided by Angel and 
Nohara et. al. as shown in Eqs. (1) and (2) respectively. The coefficients 

Fig. 10. Training and test loss curve of the final neural network as a function of 
epoch for the first 5000 epochs. 

Fig. 11. Comparison between the actual and predicted Md temperatures of different steel samples in (a) training and (b) test dataset.  
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of the composition of C, N, Si, and Cr are strikingly common in these 
three equations with a very small change in the coefficient of Mn. The 
predicted coefficient of Mo concentration in Eq. (11) is more negative as 
compared to the same in Eqs. (1) and (2). This mainly points towards the 
fact that Mo is a bit more influential in stabilizing the austenite phase 
and thus comparatively depresses the Md temperature more effectively. 
Similarly, the predicted coefficients of Ni and Cu concentrations in Eq. 
(11) are less when compared to Eq. (2). Thus, although Ni and Cu are 
austenite phase stabilizers, their influence on stabilizing the austenite 
phase is relatively less when comparing the same from the equations 
provided in the literature. In other words, according to the trained 
neural network model, Ni and Cu reduce the Md temperature to a lesser 
extent than reported previously in the literature. This is probably 
because of the little presence of Cu in the class of strain-induced meta
stable austenitic stainless steels. 

Further, although previous works dictate the effect of austenitic 
grain size, temperature of deformation, and strain, the neural network 
model shows no significant effect of the same on the Md temperature of 
steel. Mathematically, it can be inferred that an increase in the grain size 
increases the Md temperature because of its small positive coefficient in 
Eq. (11). It can be physically correlated to the fact that an increase in the 
prior austenitic grain size, or decrease in grain boundary area, promotes 
diffusion-less martensitic transformation. Järvenpää et al. [90] and 
Maréchal [91] observed a continuous increase in the transformation rate 
with an increase in grain size up to 24 μm. It indirectly infers that Md 
temperature increases with grain size. Saeed-Akbari et al. [92] and 
Somani et al. [93] observed similar behaviour and it is observed that for 
finer grains, stacking fault energy (SFE) of the steel is quite higher in 
comparison to the coarser grains and that is why the tendency for 
transformation to martensite is reduced. This, in turn, says that coarser 
grains lead to a higher propensity to martensite formation. It is to be 
noted that in coarser grains formation of shear bands and their in
tersections are quite higher. A schematic description of the same has 
been presented by Jain and Varshney [94]. 

Talonen et al. [95] observed that martensite transformation is sup
pressed with increasing strain rate. It is reported that at a higher strain 
rate, there is the generation of adiabatic heating which decreases the 
free energy of the transformation of austenite to martensite [96]. It has 
also been mentioned that temperature dependence of SFE may restrict 
the formation of shear bands of critical thickness and that leads to a 
reduction in transformation rate. Thus, it can be concluded that strain 
rate does not play any role in controlling the Md. The temperature of 
deformation also has negligible impact on the Md temperature. Amount 
of strain has observed to increase the Md temperature; with increasing 

strain, the amount of defect density increases within the phase and that 
increases the total free energy of the phase. Due to this, the trans
formation temperature i.e. temperature at which both austenite and 
martensite phases become equal increases. 

3.4. Summary and conclusion 

A neural network framework is developed in this work to predict the 
Md temperature of a given steel using its characteristic information such 
as chemical composition, grain size, amount of strain, deformation 
temperature, and strain rate. Data from 193 different steel samples with 
Md temperature ranging between [-66.51oC, 221.41oC] has been 
collected from several literature sources. A neural network has been 
created with 14 input nodes for all the characteristic information of the 
steel and 1 output node for the Md temperature. The neural network 
architecture is optimized based on the number of hidden layers, the 
number of neurons present in each hidden layer, the type of activation 
function implemented after each hidden layer, and the learning rate. 
The proposed final optimized neural network architecture consists of 2 
hidden layers with 13 and 7 neurons in the first and second hidden 
layers respectively. Sigmoid and ReLU activation functions are imple
mented on all the data after the first and second hidden layers respec
tively. All the data is normalized in the range [0− 1], randomly divided 
into 80 % training and 20 % test, and used to train and test the neural 
network model. 

The developed neural network model can assist in predicting the Md 
temperature of different steel samples. The availability of information 
about the Md temperature of a steel alloy provides better control towards 
materials design. The model can serve as an important tool for designing 
steel alloys focussing on strain-induced martensitic transformation. 
Future work includes incorporating new advances in the present model 
such as Long Short-Term Memory (LSTM) [97] neural network and 
first-principles and CALPHAD-informed multiscale framework [98]. 
These developments will aid the existing model in predicting the 
physics-informed microstructure of the steel alloys for different phases 
and at different stages of alloy transformation. It provides a computa
tionally and cost-effective tool for material design under different pro
cessing conditions. 

The major findings can be summarized as follows:  

• The final optimized neural network architecture consists of 14 nodes 
in the input layer, and 2 hidden layers in which the first hidden layer 
consists of 13 neurons followed by a sigmoid activation function 

Fig. 12. The prediction error in the Md temperature for samples in (a) training and (b) test dataset.  
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whereas the second hidden layer consists of 7 neurons followed by a 
ReLU activation function, and 1 node in the output layer.  

• An empirical equation has been set up using the trained neural 
network model to calculate the Md temperature as a function of 
elemental composition present in the steel, deformation tempera
ture, and strain. The equation is similar to the equations previously 
reported in the literature with a minor coefficient change for Mn, Mo, 
Ni, and Cu. 

• The amount of C and N present in the steel influences its Md tem
perature to a greater extent as compared to any other element.  

• Austenite phase grain size and strain rate are observed to have 
negligible influence on the Md temperature.  

• Strain imparted has a positive influence on the Md temperature 
whereas the temperature of deformation has just the opposite. 
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