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On the basis of a new physical model based approach a computer package 11.111,
CRISPEN has been developed jointly by the Cambridge University and tile N"tim,
Physical Laboratory, Teddington. This system allows creep strain prediction t
engineering alloys subject to various stress and temperature histories using a set of Ihi
coupled differential equations . The first describes the strain rate in terms of stirs
temperature and two internal state variables: an internal stress and a damage parameter.
The other two describe the rate of evolution of the internal stress and the damage. A
major unresolved problem is the detailed form of the equations describing the evolution of
the internal state variables. Different classes of material may require an altogether
different set of equations. However using the simplest possible approach CRISPEN does
predict fairly well the creep behaviour of the class of material exhibiting either linear of
exponential strain softening such as the superalloys. A detailed analysis of the creep dat:t
of a range of superalloys reveals that oiler certain conditions both of these mechanism.
may occur in parallel.

This report explores how the existing package could be modified to simulate the cre.-l-
behaviour of materials where both linear and exponential softening mechanisms operate iii

parallel. The present CRISPEN system assumes the material to be isotropic. The repor+
also examines how the existing formulation could be modified to incorporate full
crystallographic anisotropy to simulate the orientation dependence of the creep behaviour
of single crystal superalloys.

The mechanisms of deformation in certain other forms of material testing such as stress
relaxation, low cycle fatigue or constant strain rate tests are similar as in creep.
Therefore' CRISP EN type analysis could possibly be extended to describe such tests as well.

An attempt has also been made to d"sctihe in this report how this could be implemented.
Existing data base on superalloys has been used to demonstrate the potential of this
approach.
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1. INTRODUCTION

The performance of a high temperature structural material is judged by its ability to

withstand the operating stress for a sufficiently long time with minimum accumulation of

plastic strain or microstructural damage . Constant stress/ load creep test is a convenient

method of evaluating this in a laboratory . The results being presented in the form of a

strain -time plot for a given stress and temperature. The plastic strain at a given time is

expected to be a function of the stress, the temperature, the microstructure and the extrnt

of accumulated structural damage.

An atlas of such plots for a range of stress and temperature forms the basis of the

current design practice against creep . The method followed Is purely empirical and

therefore its accuracy would depend on the availability of test data under conditions very

close to those encountered in actual operation . This is often impossible to get because of

the unusually long testing time involved . Extrapolation of short term test data may lead

to unrealistic predictions particularly when the mechanism of deformation under the actual

operating condition is different from the ones encountered during testing.

A design approach based on the actual microstructural changes that take place in the

material during service would no doubt be more scientific. In the past several attempts

have been made to model the high temperature material behaviour in terms of either t11c

dislocation structure that develops or the structural changes associated with diffusion

controlled transformations that may take place during service . Many of these offer

excellent quantitative description of the process. However the parameters used to describe

these are often difficult to evaluate from simple laboratory tests.

I

Recent developments of the CRISPEN(I-3) system based on a physics based model offers

a scope of developing an alternative approach to the current design practice against creep.

Using the concept of a two bar model to represent a two phase material it has been

shown(l) that the process of creep could be adequately described by the' following set of

three ccupled differential equations:

ESS

1 -vI/a

f(w)
1 - vl*/a
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Where the equation I describes the strain rate ( e) as a function of the steady state creep

rate (Ess ), applied stress ((T) and two internal state variables viz internal stress (ai) and

damage (w). The subsequent two equations define how (Ti and w build up dining the

process of deformation . As vi approaches a limiting value of ai* the rate of change of

internal stress ai would become negligible and a would approach the steady state value of

e which is often given by the following power law:

ESS - Co

where ao and Co are the reference stress and the reference creep rate respectively.

4

The creep curves of most engineering materials exhibit a prominent tertiary stage where

the strain rate continues to accelerate . This may be caused by a variety of damage

mechanisms . These have been classified and documented by Ashby and Dyson(4.5).

Present CRISPEN version has the capability of analysing two distinct types of intrinsic

softening behaviour of materials viz time softening and strain softening . Materials such as

the low alloy steels where the precipitates undergo a time dependent growth during service

is expected to follow the time softening model . Dyson and McLean (6) have shown that

in such a situation the exact forms of the functions f and g in equations I and 3 aw

given by:

f(w) - (I + w)n (5)

g(w) - a(l - bw)4 (6)

where a and b are constants.

Most nickel base superalloys on the other hand exhibit a strain softening behaviour as a

result of continuously increasing mobile dislocation density (or velocity )(6). Depending on

whether the strain acceleration is independent or dependent on the current value of

dislocation density two different models have been identified. Linear strain-softening

model is based on the assumption that an increment in strain leads to a proportionate

increase in either the dislocation density ( p) or velocity. Thus the functions f and w can

be shown to have the following form:

f(w) - g(w) - (1 + w) (7)

Whereas in the exponential softening model the increment in p is proportional to its.

current magnitude. Consequently the functions of f and g of equations 1 and 3 are give+i

by



F(w) - g(w) - exp (w)

TABLE I

PARAMETERS DIRECTLY MEASI;RABLE FROM THE CREEP CURVE

1 Primary creep strain Ep

2 Primary time constant tp (s)

3 Minimum creep rate Emil) (S-

4 Tertiary time constant tt (s)

5 Failure time tf (s)

6 Failure strain Ef

7 Stress exponent n

8 Activation energy for creep QI (kJ/mol)

(8)

The model parameters used in equations 1-3 can be determined easily from a set of creep

strain-time plots for a specific material. Table I gives a list of parameters, directly
9

measurable from a creep curve (Figure 1). The relationship between these measurable

characteristics of creep curves and the model parameters used in CRISPEN are given in

Table 2 for a case where exponential softening model is operative.

TABLE 2

Relationship between measured characteristics of creep curves and the parameters of the

combined models of primary and exponential strain-softening for the case when tt > tp.

Model Parameter Measured Characteristics

n
Q

E1 Ess - Eo - Emil)
0o

-1
Emintp

a */LT 1 4-
ep

2

Emintp
H/cr E p 1 +

ep

C In 4.9/2(emintt)
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Some of these can however be estimated more precisely by a least square analysis of tt e

relevant portion of the a vs a plots. Such plots also reveal the suitable sofh_nin!-

mechanism for a specific material. Figure 2 shows a set of a vs a plots used to ideiitif'.

whether linear or exponential model is applicable for a given material . Integration of the

equations 1-3 using the parameters thus obtained provides the creep strain time plot

(Figure 3 ). Following this approach creep behaviour could be predicted for conditions

where no data is available by interpolation or extrapolation of the existing parameter data

base . This approach has been discussed by ]on et al (l) and Barbosa et al(2) in great

detail to show how such analysis could provide reasonable predictions even in cases where.

the stress or the temperature undergo cyclic variation(3). The present crispen package is

however applicable to isotropic materials deforming to high creep strains under constant

stress by any one of the above softening mechanisms.

Analysis of the creep data on superalloys over a range of stress and temperature reveal

that under certain conditions both exponential and linear softening mechanisms operate in

parallel . Therefore it is necessary to develop a method of isolating the respective

contribution of each to extend the scope of the existing version of crispen . A section of

this report examines how this can be implemented.

Nickel base single crystal superalloys are now extensively used in critical components in

modern aero-gas-turbines. <001 > is the most preferred orientation because of its good

combination of creep and thermal fatigue behaviour although creep resistance of <lll:--

can be substantially greater than that of <0()l >(7-9). Crispen package can no doubt I r

used to analyse the creep behaviour of such an alloy of given orientation. However sinrt

it is based on tensile formulation it can neither compute the change in orientation of the

crystal during creep nor predict the creep behaviour of any alternate orientation . Present

report also examines how the existing model could be changed Into shear formulation to

simulate the orientation dependence of the creep behaviour of single crystal superalloys.

The mechanisms of deformation in certain other forms of material testing such as stress

relaxation , low cycle fatigue or, constant strain rate tests are similar to those in creep.

Therefore in principle the approach used in crispen could be extended to model such tests

as well . In fact to a limited extent the existing package has been used to model the

creep behaviour under cyclic loading. The present report examines in detail how the

existing system could be reformulated into a universal model capable of simulating ill

forms of uniaxial mechanical tests at elevated temperature.



2. COMBINED STRAIN SOFTENING 1^1t >I ^f L

Figure 4 shows a typical e/ ei vs a plot of a Nickel base superalloy IN73RDS uncle

conditions where both linear and exponential strain softening occur in parallel . In sir ti

case the strain rate could be described by the following equation

In (e/ef) - In (1 + C e) + k In e

where C and k are the linear and the exponential softening coefficients respectively.

Since this equation is nonlinear in C it is not posible to find out both C and k using the

principles of linear regression analysis. However in the neighbourhood of C = Co the

equation 9 may be approximately represenc"iI by the first two terms of the Taylor's seric'

as follows

aln (e/ef)
In (e/e1) - k In c + In (1 + Coe) + IAC (10)

aC

Equation 10 being linear in both k and AC it is possible to estimate each of these by the

method of least squares . The term within the second bracket essentially represents the

magnitude of the error as a result of an improper choice of C as Co and dC gives a

measure of the change in the magnitude of Co which would provide a better estimate.

Therefore by the repeating the process of c ocnputation with a new value of C given by

C - Co + AC/n

where n is a constant, AC could be made negligibly small. Similar approach has been

used earlier for estimating nonlinear stress rupture parameters(10).

A computer program based on this principle has been developed to estimate both fl

linear and the exponential softening coefficients . This model first estimates an initial

value of C assuming that only linear softening model is operating . It has been observed

that this approach leads to a rapid convergence when ti in equation 11 is 1. However n

choice of ri = 2 is recommended as it gives a smooth convergence.

Using this program the plots given in Figure 5 have been generated. Comparison, wit!'

the experimental points clearly reveals that the present analysis provides a much better

prediction. Once these two softening coefficients have been estimated it is now possible

to simulate the creep curve by integrating the equations 1-3. The function f and g in

this case should be given by

g(w) - f(ca ) - ( I + (C/k)&:) ^rp (o) (12)



The predictions of the creep curves assuming exponential, linear and the combined model

for a specific condition have been compared in Figures 4-5. As expected in this case the

combined model gives a better prediction. Incorporation of the present

procedure therefore significantly improves predictive capability of the crispen package.

MODELLING CREEP BEHAVIOUR OF SINGLE CRYSTAL SUPERALLOYS

The creep behaviour of single crystal superalloys, like that of the simpler equiaxed

wrought or cast versions is dominated by a progressively Increasing creep rate over most

of its life . Dyson and McLean (6) have shown that for nickel base superalloys this

extensive tertiary-creep behaviour is a result of strain softening probably due to the

accumulation of mobile dislcoations . This concept has been used in crispen to develop a

physics based method of analysis of the creep curve so as to allow extrapolation or

interpolation to arbitrary stress/temperature conditions. However the formalism used here

implicitly assumes the material to be isotropic . This part of the report examines how the

model could be extended to account for the inherent crystallographic anisotropy of single

crystal superalloys.

3.1 Development of the Model

Ion et al (1) discuss two variants of the strain softening model that are associated with

either linear or exponential accumulations of damage with creep strain . Recently, Maldini

and Lupinc (11) have suggested that the linear strain softening model is more appropriate

to single crystal superalloys and this conclusion is supported by Curtis et al (12) from

analysis of an extensive creep database for a single crystal superalloy. Consequently, the

following discussion will be restricted to extending the linear strain softening model. The

exponential strain softening model can be similarly modified if required. 1,

The variation in uniaxial creep rate a with increasing creep strain t can be represent' l

by the following equation (1, 6):-

e - el (1 + C3 e) . (13)

where ei (o-,T) is the initial creep rate, ar is the applied axial stress , T is the temperature

and C3 is the strain softening coefficient. Curtis et al (12) have shown that for <001>

crystals ei (Q,T) is well described by an exponential, rather than power law, formulation

of creep. Consequently, Equation 1 can be expressed more fully in the following form:-

Q1
c - C1 exp C2 o - - (I + C3 (14)

RT



where Cl, C2 and C3 are all material constants, 01 is the activation energy for creep

and R is the gas constant.

The study also reveals that the softening coefficient C3 as well can be represented by an

expression given below:

Q2
C3 - C4 exp - - C5 Or

RT
(15)

The axial strain a is the resultant of shear strains -y due to all active slip systems in the

crystal. Consequently, Equations 13-15 can be reformulated in terms of shear stresses (r)

and shear strains (-y) for appropriate slip systems to allow the simulation of creep along

an arbitrary crystallographic direction. Thus, for nickel-base superalloys plastic

deformation is thought to result from shear on one or a combination of the following slip

systems: {111 }<110>, (111 }<112> or {100}<011>. We now consider the formulation of

Equation 14 when strain results from shear displacements on all possible slip systems n'

the arbitrary type {nl n2 n3} <b1 b2 b3>,

Let yk be the magnitude of the shear on the k-th slip system represented by

(n1k n2k n3 k) [blk b2k b3k] where nik and bik represent the components of the unit

vectors denoting the slip plane and slip direction respectively along the cubic

crystallographic axes . As a result of such deformation , the crystallographic axes may

rotate and the indices of the tensile axis may change. However , since the indices of the

slip system are invariant , the sum of the displacement components with respect to the

crystallographic axis is given by:-

^Eijk - jyk bik njk (16)

The suffixes i, j in the above equation denote components along the crystal axes and can

have integer values from 1 to 3. If [t1 t2 t3] and [T1 T2 T31 are the vector:;

representing the tensile axis before and after a small amount of deformation , it can be

shown using the matrix method followed by Chin et al (13 ) that:-

1 + lellk lE12k lE13k

IE21k 1.+ IE22k ^E23k

^e31k ^E32k 1 + lE33k

tl

t2 (17)

t3

On differntlating Equation 16 with respect to time, recognising that the initial orientation

is invariant one obtains:-
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l.E 11' >,E 12' >.E 1 3l"

^.E21k 22k ^.F23k

^.F31k r37k rIi1:

where sljk - yk blk njk

tl

t2

t3

(18)

(19)

Expressions for yk can be obtained from Equation 14 by substituting the appropriatc

resolved shear stress Tk for (T and the shear -train yk for e.

) V

where C2k - C2mk and

C3k - C4k exp
Q2

RT

01

Rr

C5k ai (21)

mk is the reciprocal of the Schmid factor for the k-th slip system. The constants C1 k

and C3k are related to C1 and C3 by a geometrical factor that can be determined from

Equation 17. For the case of a [0011 tensile axis and the {111 }<110> slip system it can

he shown that:-

8 8

e<001> - 111)<110> and e <U01> - y ( 111)<110>
(22)

In this particular case, of the 12 possible slip systems 4 have a Schmid factor of zero and

hence will not contribute to creep deformation. The remaining 8 have an identical

Schmid factor of 0.4082 and hence each will make the same contribution to creep strain.

However, if the slip system were {111 }<1 12:x, of the 12 possible slip systems, four have a

Schmid factor of 0.4714 and the remaining 8 have much lower values of 0.2357. On the

basis of Equation 20, the shear creep rate on these eight slip systems will be negligible in

comparison to the 4 more highly stressed systems. In this case the relationship bet'.s'cen F

and y can be shown to be:-

8 8

<001> 3 ,/2 y(11 l )<112> and ,001 > - 3,/2 7( 111 )<U2> (23)

Thus, by using Equations 20-22, the material constants used in the tensile fonnulsiliun

tertiary creep of <001> oriented crystals can be converted to those needed for t l ' c ;l c

formulation. With this information it is possible to simulate numerically the tensile creel

of a single crystal of arbitrary orientation using Equations 17-20. A standard sub-routine

Clk exp IC2k r k - (I I
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using the Runge-Kutta method with adaptive step size control (14) was used to integral.

Equation 20; the solution was insensitive to the time interval used for the simulation.

I

3.2 Results and Discussion

Figure 6 shows a typical creep curve for a <001 > oriented single crystal superalloy

SRR99. Equation 14 has been fitted to these strain/time data using the methods described

in reference 1 and 2 and the calculated curve is compared with the measured data in

Figure 6. The constants for the tensile formulation can be transformed as described

above to those required for shear formulation assuming either {111)<01 1 > or

{111}<112> slip respectively. The values of these constants for shear on {111}<110>

are listed in Table 3. The curves generated for these slip systems using shear formulation

are included in Figure 6; the small discrepencies between the creep curves given by tensile

and shear formulations at higher strains are a result of errors in the numerical integration

and are well within the scatter associated with creep performance (15).

TABLE 3

MATERIAL CONSTANTS FOR CREEP OF SRR99 IN

TENSILE AND SHEAR FORMULATIONS

Tensile Formulation Shear Formulation

UnitParameters

<001> <111> (111)<110> (100)<011>

Cl 9.3 x 1013 2.53 x 10-5 2.85 x 1013 1.79 x 10-5 s-1

C2 1.77 x 10-2 5.57 x 10-3 4.34 x 10-2 1.18 x 10-2 MPa-1

C4 1.36 x 10-2 7.56 x 105 4.44 x 10-2 1.07 x 106

C5 0.009 0.005 0.022 0.001 MPa-1

Q1 552 85.6 552 85.6 kJmol-1

Q2 131 - 82 131 - 82 kJmol-I

NB el - C1 exp (C2 a - Q1/RT) and C3 - C4 exp (Q2/RT - C5 o)

Having established the appropriate constants for shear creep by analysis of creep data for

the symmetrical <001> orientation, these can be used to generate tensile creep curves for

arbitrary orientations. Figure 7 shows the creep curves computed for exact <001 >,

<111> and <011> orientations assuming that slip occurs on {111}<011> only. These

are symmetrical orientations and there are no changes in orientations with strain. The

model predicts that the creep performance of <001 > is inferior to that of <011> which

0
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is contrary to experience while <111> has the best creep behaviour in agreement with

certain observations. However when a small deviation from <011> is considered large

crystal rotations occur and this leads to a change in the order of creep performance lot

f l l l }<01 1 > slip as shown in Figure 7. Thkk is at least consistant with the experimental

observations of the anisotropy of creep performance.

The comparison of the creep curves of <111> SRR99 for the few test conditions under

which data are available indicate that the predictions based on the shear formulation along

f l 1 1 } <0I 1 > are negligible when compared with the actual plot. This indicates that
I

certain other slip systems must be contributiiip to the creep along <111> axis. There is

some experimental evidence that both octahedral and cube slip can occur in nickel base

superalloys(16,17). Indeed models of the anomalous temperature dependence of yield in

intermetallic compounds, such as y' which constitutes 70 vol% of SRR99, appeal to the

occurrence of thermally activated cross slip onto cube planes. The database on the creel?

performance of <111> SRR99 is very limited to permit a reliable estimation of the

material constants needed for the shear formulation along {100}<011 >. An approximate

estimate of these may however be obtained from a set of available creep curves under

different test conditions. Since the contribution of octahedral slip towards the creep of

<111> oriented crystals were found to be insignificant attempts have been made to model

its behaviour on the basis of the material constants for cube slip determined from those

creep curves only. These constants are given in Table 3.

Figure 8 shows a typical creep curve of a <111> oriented SRR99 single crystal simulated

on the basis of shear along { 100}<011 > as well as tensile formulation . Both of these

describe the experimental data reasonably well. The small difference in the predictions

between shear and tensile formulations is a result of numerical computation and is

insignificant when compared with the scatter associated with creep performance.

Having established the set of material constants for shear creep on {100}<011 > as well

from <111 > oriented crystals it is possible to generate the creep curve for any arbitrary

orientation when both octahedral and cube slip operate. Figure 9 presents a set of creep

curves for different orientations when both slip systems are in operation. These represent

the experimental plots well within the scatter associated with creep performance.

Comparison with the plots predicted on the basis of octahedral slip reveal that the

introdution of the concept of cube slip significantly reduces the degree of anisotropy.

Using this approach it is now possible to predict the creep performance of crystals of any

orientation and represent the same in the form of contour maps over the entire

seterographic triangle . Some of these have been presented in Figure 10. This shows that

crystals near <001 > have the best creep resistance when deformation takes place by both



octahedral and cube slip. This trend is indeed in agreement with most experimental

observations available to date. However the present prediction is based on a very limited

database on <111> crystal . There is a need to collect more data on the creep

performance of SRR99 along < 111> orientation to enable a more precise estimation r.

the material constants for cube slip.

4. UNIFIED MODEL

Development of a unified constitutive model for creep and plasticity has been an area of

great interest over the last two decades (18-24). the main impetus for R&D efforts came

from the possibility of this approach being incorporated into finite element codes for the

design and analysis of structures. This objective has yet to be achieved for a number of

reasons: those often quoted are the mathematical stiffness of the equations used - which

affect accuracy of calculations; and the incorporation of a large number of necessary

variables into the model, which are difficult to evaluate (23,24).

While developing a constitutive model it is often necessary to identify and select only a

few of the most important aspects of the material behaviour . Any attempt to condense

all aspects often lead to a large number of complex equations which are difficult to solve.

Most of the current models (18-24) place great emphasis on the hardening behaviour of

the material encountered during the primary stage of creep as in many pure metals and

single phase alloys . However many engineering materials such as the superalloys exhibit a

prominent strain softening behaviour right from the early part of its creep life . Therefore

constitutive equations which describe this aspect of the material behaviour will be most

appropriate for superalloys.

Application of the crispen package has been shown to explain the creep behaviour of a

number of superalloys fairly well . In many of these the intrinsic softening mechanism has

been found to follow the linear model. Therefore the following constitutive equations are

sufficient to simulate their creep behaviour(t ).

e - el (I - S) (1 + c)

S - HE - RS

W - Cc

(24)

Where the set of four parameters representing base creep rate (ei), coefficients i

hardening (H), recovery (R) and softening (C) may vary with stress and temper: rturr-

This section examines how these equations could be used to model other forms of uni.,u .r

mechanical tests. The exponential or the time softening models can also be simil.rrlti
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modified if required.

4.1 Development of the Model

In order to model creep tests it was not necessary to constitute a differential equation

representing the applied stress since it remains constant . Besides a in the above equation

was used to denote the plastic strain (ep) even though the total strain ( e) is known to be

made up of the elastic (CE) and the plastic (ep) components. In a creep test this is

immaterial as EE < Ep. However this does not hold in other forms of mechanical tests.

Therefore to extend the present approach to model other forms of uniaxial tests we must

replace a in equation 24 by ep and build up an equation representing applied stress a on

the assumption that it is proportional to the elastic strain. Thus the constitutive model

for all forms of mechanical tests on superalloys could be given by

Ep -- Ei (1 - S) (I + w)

S - H ep - RS

or - E (E - E p)

where E Is the Young's modulus. The above set of four coupled differential equations

can be used to simulate any uniaxial mechanical test provided appropriate boundary

conditions are selected and the assumption that all tests are subject to the same damage

mechanisms is valid. For example in the case of a constant strain rate test, a is directly

proportional to the cross head speed of the testing machine and in a stress relaxation test

e = 0. Figure 12 provides a summary of the constitutive model and the boundary

conditions for all such tests. These may be classified into two groups depending on the

control procedure adopted during the tests. In a strain controlled test it is the total strain

(c) which is given by a simple function of time. Whereas In a load controlled test it is

the applied stress that follows similar time dependence.

With this formulation it is possible to simulate numerically any forms of uniaxial

mechanical tests. A standard sub-routine using the Runge-Kutta method with adaptive

step size control was used to integrate the above equations. A user friendly interactive

computer program has been developed. This has been used to simulate different types of

strain and load controlled tests on IN738DS superalloy (1).

The material constants required for this have been obtained from the existing database on

creep test at 850'C only. ei has been assumed to follow a power law dependence;

el - Aan (26)



where A and n are material constants. Actual functional form of S which represents th'.

hardening response is given is equations (1-2). The ratio o i Io which is a measure of t1

limiting internal stress that builds up in the material has also been assumed to I»

material constant ( R.). The values of the material constants used for the simulation a'

given in Table 4.

TABLE 4

MATERIAL CONSTAN"I'S FOR IN738DS AT 850'C

n

H

E

Ro

C

4.2 x 10-35

10.7

8 x 104

1.5 x 105

0.9

20

MPa

MPa

E

4.2 Results and Discussion

Figure 13 presents a set of predicted stress vs strain plot for IN738DS at 850-C uncle

different strain rates . The plot exhibits that the stress increases with strain until a peak

value is reached and there after it continues to decrease. In a normal stress-stia;

diagram this drop is usually associated with a localised deformation or necking. 1

present model however does not include the contribution of necking on creep. Therefor ee

the predicted drop in the flow stress after the peak is due the effect of the intrinsic

softening of the alloy . As expected the peak stress Is found to be a function of the

strain rat& and its magnitude is of the same order as the applied stress required to

produce the same initial strain (or creep ) rate in a constant stress creep test.

Figure 14 shows stress relaxation plots for IN738DS at 850'C at two different initial stress

levels . The prediction shows that under all conditions the stress approaches a limiting

value . In fact the trend ,is similar to those observed in many superalloys. Some

experimental work have just been undertaken to check the validity of such predictions.

The stress-strain plots can also be predicted under cyclic loading through zero using this

method. Figure 15 show such plots under two different strain rates. These tests have

been simulated under strain control mode . Figure 16 shows how the stress is expected to

change during the first few cycles . The analysis shows that the material exhibits very

little cyclic hardening during the initial stage . This is followed by a prolonged stable
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cyclic behaviour. Subsequently as the damage builds up the maximum stress in each

successive cycle continues to drop. Figure I ; shows the nature of the elastic strain range

vs the number of cycle plot. The plastic strain range increases with cycle and it exceeds

the elastic strain range in this case right from the beginning. Nickel base superall(' s o.lch

as 1N738 is known to exhibit similar hehaviour.

Similar o vs a plots have also be generated to simulate tests performed under load

controlled conditions. These have been presented in Figures 18-20. These plots clearly

indicate the condition underwhich the alloy is likely to undergo cyclic deformation without

significant accumulation of plastic strain. The present analysis reveals that the chance of

getting such a response increases as the mein stress approaches zero. Some

austenic stainless steel does show similar behaviour.

results on

Numerical solution of the constitutive equation ( 25) representing the high temperature

deformation behaviour of nickel base superalloy does provide a means of simulating ire;

response to a more complex form of loading . than that encountered in a creep test. 1 h

nature of the plots simulated by this tt rhndq ue is similar to those reported for ^ v' .:,i

nickel base superalloys. There is a need to undertake more experimental u;

IN738DS under various test conditions to examine how close are the predictions obtained

purely on the basis of the material constants derived from simple creep tests.



5. CONCLUSIONS

(i) A method of estimating the linear and the exponential softening coefficients when

both mechanisms operate in parallel has been developed and it has been

incorporated in the MODSEL module of CRISPEN.

(ii) The model based approach of CRISPEN has been extended to incorporate

crystallographic anisotropy of deformation . The computer program developed on

this approach is capable of simulating creep curves of crystals having any arbitrary

orientation.

(iii) It is necessary to consider the contribution from cube slip to explain the observed

creep behaviour of SRR99 crystals having < 111> orientation.

(iv) Material constants for octahedral slip in SRR99 can be estimated from the creep

curves of <001> oriented crystal whereas those for cube slip can be obtained

from the creep curves of crystals having <111> orientation.

(v) The above approach provides a means of mapping the creep performance of

SRR99 superalloy crystals of all possible orientation.

The unified model described above extends the CRISPEN approach to simulate

other forms of mechanical tests such as constant strain rate, strain relaxation and

low cycle fatigue. The predictions based on this method have been shown to

describe most of the important features of these tests . However it is necessary to

undertake experimental work to check the validity of the prediction.
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FIGURES

Figure 1 Definition of an engineering psi •mieter set (Table 1) that describes the shays

of a creep curve and its dependence on stress and temperature.

Figure 2 Types of strain rate (r) vs strain (e) plots which may be used to identify

the dominant softening mechanisms in superalloys and estimate the softening

coefficient. (a) exponential model (b) linear model. The slope in either

cases gives the respective softening coefficient. NB cr = e, mcr = ri.

Figure 3 Typical creep curves predicted on the basis of either linear or exponential

softening mechanisms. The points represent experimental plot (a)

exponential model (b) linear model (cr = e, mcr = Ei).

Figure 4 A typical strain rate vs strain plot for IN738DS under conditions where both

linear and exponential mechanisms operate in parallel . The points represent

experimental data. (a) exponential model (b) linear model. None of Q-

two gives a satisfactory fit (er -- r, mcr = (i).

Figure 5 (a) A typical creep curve for IN738DS simulated on the assumption that both

exponential and linear softening mechanisms operate in parallel. The points

represent experimental data. (b) The strain rate vs strain plot used to

determine the linear and the exponential softening coefficients (cr = c ,

mcr = Ei).

Figure 6 Creep curve for <001 > oriented SRR99 tested at 1000'C and 300 MPa and

the calculated creep curves for (a) tensile formulation (equation 14) and

shear forumations for (b) {lll}<112> slip (equation 20).

Figure 7 Calculated creep curves for SRRrt9 at 950*C and 300 MPa for axial stressing;

of crystals with exact <001>, <011> and <111> orientations and for

<067> and <2 12 13> orientations assuming only {I11}<110> slip.

Figure 8 Creep curve for <111> oriented SRR99 tested at 950'C, 300 MPa and the

calculated creep curves for (a) tensile formulation (Equation 14) and (b)

shear formulations for {111 }<I 1 O> + {100}<011 > slip.

Figure 9 Calculated creep curves for SRR99 at 850'C and 450 MPa assuming that slip

takes place on both {l11}<110> and (100)<011>. The respective constants

were derived from <001> and <111> oriented crystals.
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Figure 10 A set of creep performance maps for SRR99 at 850*C, 400 MPa showing the

time to reach a specific strain as a function of orientation.

Figure 11 A set of creep performance maps for SRR99 at 850*C 400 MPa showing the

levels of plastic strain attained at a specific time as a function of orientation.

Figure 12 A unified constitutive model for uniaxial mechanical tests.

Figure 13 A set of calculated stress vs strain curves for IN738DS at 850C undr.,

different strain rates.

Figure 14 A set of stress relaxation curves for IN738DS at 850'C calculated using the

unified model and the material constants obtained from creep tests.

Figure 15 Stress vs strain plot during the first few cycles of a strain controlled U:1

test on IN738DS at 850*C calculated on the basis of the unified model ur:inr

the material constants derived from creep tests , at two different strain rm'

(EDOT). (a) I x 10-2 (b) I x 10-3 per sec.

Figure 16 Stress vs time plot during the first few cycles of a strain controlled LCF test

on IN738DS at 850*C at two different strain rates . (a) 1 x 10-2 (h)
1

1 x 10-3 per sec.

Figure 17 The elastic and the plastic strain ranges plotted as a function of the number

of cycles during a computer simulated strain controlled LCF test on IN738DS

at 950*C and two different strain rates (EDOT). (a) 1 x 10-2 (b)

1 x 103 per sec.

Figure 18 ( a) Stress vs strain plot during the first few cycles of a load controlled LCF

test on IN738DS at 850*C calculated on the basis of the unified model using

the material constants derived from creep tests . (b) Strain vs time under the

above condition. At a mean stress of zero the material tends to approach a

state of cyclic stability.

Figure 19 (a) and (b) as in figure 18 but for mean stress < zero . The strain

continues to decrease indefinitely with each cycle.

Figure 20 (a) and ( b) as in figure 18 but for mean stress > zero . 'I he dial,

continues to increase indefinitely with each cycle.



Figure 21 The elastic and the plastic strain ranges plotted as a function of the nurnbei

of cycles during a computer simulated load controlled LCF test on IN738DS

at 850'C. ( a) Mean stress is negative. (b) Mean stress is zero . (c) Mean

stress is positive.
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Test of exponential strain softening hypothesis !
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Test of linear + exponential softening hypothesis !
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UNIFIED MODEL
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Fig 12 Unified constitutive model for uniaxial mechanical test . N is an integer,

and f. are mean stress and strain rates . See text for rest of the symbols
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