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Nature keeps her secrets in all her creations. Manmade logic and perceptions attempt 

to decode and decipher these secrets. Our limited range of observations may have 

been extended by technological advancement; however there is much to unveil. Fractal 

is Nature’s own logic—the method of self-generation, the pattern of self-similarity. 

Images and signals from materials may have signatures waiting to be discovered and 

fractal could be the answer to unraveling them. 
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1 
INTRODUCTION 

 

Materials have hierarchically organized complex structures at different length scales. 

Quantitative description of material behaviour is dependent on four fundamental length 

scales [1], which are of concern to materials scientists. These are (1) nano scale, 1-103 nm, (2) 

micro scale, 1-10 3 μm, (3) macro scale, 1-103mm, and (4) global size scale, 1-106 m. While the 

nano scale corresponds to, often, highly ordered atomic structures, the global size scale relates 

geophysical phenomena and large man made engineering structures. Micro scale and macro scale 

correspond to size of material samples used in laboratories, for designing and for fabrication of 

miniature to small machineries.  

Materials researchers have been attempting to find the correspondence between two or more 

length scales so as to predict material behaviour at a desired scale from information available at 

another scale. For example, since it is often difficult to evaluate mechanical properties of 

components of global size due to measurement limitations, the same has to be predicted from 

tests done on small proto-type engineering structures or, even better, from the behaviour of the 

material at a still smaller specimen level. An important concern for scientists is to devise 
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computational methodologies for information extrapolation where measurements made in micro 

or nano scale can be used for assessment of engineering components at global scale. The 

assessment is usually to ensure safety, integrity and reliability. 

For morphological characterization of materials in micro and nano scales, optical and electron 

imaging is popularly used to identify characteristic features of material structures. For 

engineering structural materials, a class that is of immense technological importance, typified by 

metallic materials, the fundamental morphological feature that is frequently measured is the 

grain size (~1-150μm), which is known to govern macro-properties like strength and hardness. 

The functional formulation of the two quantifiable entities, popularly known as the Hall-Petch 

[2, 3] relation, is given by 

 
g

iY D
K

+= σσ  (1.1) 

where σy is the yield stress, σi is the “frictionless stress”, representing the overall resistance of 

the crystal lattice to deformation, K is the “locking parameter” that measures the relative 

hardening (difficulty in deforming) contribution of the grain boundaries, and Dg is the grain 

diameter. This equation is valid for a certain range of grain size, below which other equations [4] 

need to be considered. The yield stress, a macro-property estimated using micro-scale grain 

diameter, is one of the most important mechanical properties of materials essential for design and 

fabrication of engineering structures. Similar correlations, generically known as structure-

property correlations for materials, are available in literature, which provide the correspondence 

between morphological characteristics, including the distribution of micro and nano constituents, 

and the physical properties of materials at the macro level. Appropriate correlation of structure 

and property demands that the parameters used encompass a wide range of length scales, and 

hence exhibit scale invariance. 

Our general perception of scale invariance comes from the concept of Euclidean geometry, the 

mathematical foundation of which permits the transformation of a one dimensional object to 

higher dimensions using integer power law exponents. This transformation is applicable to 

smooth object space, where self-similar copies of length create a surface, and several self-similar 

surfaces create volume, the self-similarity ensuring scale invariance. However for uneven or 

rough objects like complex grain boundaries or fracture surface roughness, the assumption of 

planer geometry for quantification is often found unacceptable, primarily because invariance of 
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scale is not preserved. To quantify the uneven, complex and non-planer geometrical nature of 

micro and nano constituents of materials, it is necessary therefore to devise and use suitable scale 

invariant parameters. Advancement in mathematics and of computational techniques and 

resources has led to considerable development in this respect. Fractal, for example, is a 

promising tool, particularly for quantifying patterns and complex shapes that contain fine details 

discernible at high magnifications, indistinguishable at higher length scales. 

To represent hierarchically organized material systems [5] through a unified framework, fractal 

mathematics, which naturally permits transitioning between length scales, is found to be a most 

suitable computational tool. Fractal is defined as “a rough or fragmented geometric shape that 

can be split into parts, each of which is (at least approximately) a reduced-size copy of the 

whole” [6,7]. Fractal dimension quantifies a fractal object and the dimension represents 

fractional or non-integer exponent of the power law correlation for representing irregular but 

self-similar pattern and shape of the object. The quantification gives the true measurement within 

a wide range of length scales. Scale invariant self-similar fractal patterns are often found in the 

microstructures and fracture surfaces of materials; hence fractal dimension may be an option to 

interlink morphological properties at micro-scale with the macro level mechanical properties like 

strength, hardness and toughness of a material.  

Polycrystalline materials, particularly the metallic variety that is considered important from the 

point of view of structural applications, consist of aggregates of grains; each grain having 

elementary crystallographic cell structure. To reveal microstructural features in materials, images 

of the material surfaces, suitably prepared, are captured using optical and electron microscopes. 

High resolution microstructural images of polycrystalline materials may show features like 

distinct grains and grain boundaries, precipitates, inclusions, second phase particles, defects or 

discontinuities in the form of dislocations (line defects), slip bands, porosities, micro-cracks, etc. 

Fractals can be used to model some of these features. For instance, Figure 1.1 shows the 

microstructural image of an aluminium alloy with typical “hexagonal” grain structures [5]; the 

grain boundaries are rough which can be modeled using self-affine fractal Koch curve [8], as 

shown. 

Like non-planer grain boundaries in microstructure, the geometry of crack paths, crack fronts, 

and fracture surface texture demonstrate fractal characteristics [9, 10]. However classical fracture 

mechanics assumes smooth fracture surfaces or planer cracks and the formulation of material 

properties like fracture energy, stress intensity factors (SIF), etc is based on the planer Euclidean 
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geometry. Thus the fracture energy calculated using Euclidean surface concepts is often found to 

be lower than the experimentally measured values.  

 

 

 

Grain boundary structure of aluminium 
alloy (http://www.cmu.edu/mrsec/) 

A single grain with complex 
grain boundaries[1] 

Attempt to model grain 
boundary by fractal Koch 
curve [1] 

Figure 1.1: Fractal Koch curve model of grain boundaries of polycrystals. 

Similarly, the SIF of planner cracks is less than the same estimated for actual fractal crack paths. 

Fracture features like voids, tortuosity of crack path, crack branching, manifestations of fracture 

surface undulations like striations, riverlines and other such microductilities are responsible for 

increasing the actual fracture surface area and creating fracture surface roughness. Analysis of 

fractographic images can identify these features and fractal models of these features can be 

employed to find out the true fracture surface area for calculation of surface energy. In Figure 

1.2, the fractographic image of a ductile fracture surface is represented by circular void features 

of a homeomorphic (regular) fractal model [1, 11]. Fractal dimensions quantify such fracture 

models, and the non-integer exponents can be used for estimating the roughness of the fracture 

surfaces. 

  

Fractograph of ductile fracture surface Schematic representation [11] Fractal model of the ductile 
fracture surface 

Figure 1.2: Homeomorphic (regular) fractal model for fractographic image of fracture surface 
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The sub-sections that follow highlight some specific instances where fractals may be employed 

for modelling of materials and their behaviour. 

 

1.1 Fractals for evaluation of damage in materials 

Fractal quantification of microstructural images or micrographs has immense potential for 

evaluation of damage in materials which can help in developing technology and protocols for 

remaining life assessment (RLA) of engineering components and structures. Detection of cracks, 

measurement of the crack size, quantification of damage proliferation, assessment of material 

properties, and finally prediction of remaining lives of engineering components are parts of RLA 

studies. Size of a crack or defect and the extent of damage that has been manifested have 

profound significance in RLA investigations. When defects are small in nano to micro scale they 

are collectively called damage, whereas in micro to macro scale they can further be defined as 

defects if they develop into typical forms. Damage mechanics, which primarily deals with the 

behaviour of damaged material, proposes that materials are initially damage free and, as they put 

in service, gradually over the period of time, develop microstructural damages in the form of 

cracks and crack-like defects, micro pores and voids, precipitations of second phase particles, 

coarsening and modification of precipitates, characteristic dislocation configurations etc. 

Damaged areas and defects are often irregular in shapes. High resolution microstructural images 

of materials contain complex morphological signatures of these damages and defects. The 

accumulation of micro damages in the matrix of materials alters the intrinsic macro mechanical 

properties like strength and hardness of materials. These properties may show size dependence 

depending upon the size or extent of damage and the size or volume of material probed during 

determination of properties. Quantification of damage state by fractal analysis of microstructural 

images can lead to the generation of scale invariant parameters that may help in overcoming 

limitations of structure-property correlation over a wider scale range. 

 

1.2 Fractals for studying fracture mechanisms 

When an object is broken into pieces, fracture surfaces are generated. Fracture surfaces contain 

valuable information with regard to the type of material, the load history it has been subjected to 

and the mechanism of fracture operative. Generally, a flat fracture surface indicates brittle 

fracture, whereas roughness of the surface and tortuosity in the crack path (or the profile of a 
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fracture surface) signify ductile fracture processes are active. Examination of fracture surfaces, 

using high resolution images known as fractographs, is routinely carried out for quality 

assurance of engineering materials as well as to study the fracture behaviour of materials. 

Microscopic features like cleavage patterns, voids, striation marks, stretch zone, etc are the 

signature of various fracture processes which can be identified in fractographs. These 

fractographic features are responsible for the variations of fracture surface roughness that is 

represented by contrast variations in fractographic images. Quantification of fracture surface 

roughness by fractal analysis of fractographic images may help in gaining greater insight into 

mechanical and fracture behaviour of materials, so as to understand the mechanisms liable to 

cause morphological variations or roughness on the fracture surface. Thus, a fractal based 

quantification tool for analysis of fracture surface would assist in devising mathematical models 

for correlating with macro-mechanical properties like toughness, strength and hardness of 

materials. 

 

1.3 Fractals for non-destructive signal analysis 

Evaluation of materials through determination of mechanical properties is a destructive 

procedure. Small amounts of material need to be removed from components for preparation of 

specimens for mechanical testing. Evaluation of materials based on microstructures (and fracture 

surfaces, if available) are invasive in the sense that sufficient in situ (and often ex situ) 

preparations are necessary prior to microscopic observation. When components are operational, 

and when on-site and quick evaluations are necessary in industrial scenarios, it is imperative to 

employ non-destructive methods for assessment of materials. Magnetic Barkhausen emission 

(MBE) is an upcoming non-destructive method for evaluating microstructural damage in certain 

classes of materials. The signal obtained by MBE is a high frequency burst type temporal signal. 

Fractal dimension of the MBE signal may detect microstructural changes accompanying damage 

so that variations of material behaviour may be indexed and material degradation during service 

predicted. 
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1.4 Motivation of work 

The motivation of this investigation comes from major research activities taken up at the 

National Metallurgical Laboratory, Jamshedpur, under an initiative entitled “Component 

Integrity Evaluation Programme” (CIEP). In this programme various methodology and 

techniques were developed and implemented for structural integrity and remaining life 

assessment of engineering components. In a sequel project called “Technology for Assessment 

and Refurbishment of Engineering Materials and Components” (TAREMaC), sponsored by the 

Council of Scientific and Industrial Research (CSIR), India, currently being executed in network 

mode, emphasis has been given to development of advanced computational techniques for 

evaluation of microstructural damage in materials. Quantification of microstructural and 

fractographic images and non destructive signals is required for evaluation of damage in 

materials. Fractal quantification is a non-conventional method that can be used as a 

complementary technique for microstructural characterization and signal analysis which can lead 

to important advancement in understanding of structure-property correlations of materials. To 

appreciate and develop these correlations it is necessary to take up interdisciplinary research in 

areas like metallurgical engineering, computer science and applied mathematics. The current 

endeavour is an effort along these lines. The outcome of this work is expected to generate 

knowledge in the area of signal and image processing with particular emphasis on the 

microstructural and fractographic images and MBE signals. 

 

1.5 Fractal analysis in other areas and the gap in materials science research 

Fractal dimension as a scale invariant quantitative tool has been used extensively in medical 

imaging like X-ray radiography, ultra-sonography, etc [12-15]. It has been used to quantify 1D 

temporal signal like EEG for assessing neurological aspects of the brain [16]. However fractal 

analysis of intensity images of microstructure and fracture surfaces for evaluation of materials 

has not received much attention. The standard stereological measurement procedures available 

for characterizing material microstructures are found to be over simplification for quantifying 

complex morphological structural properties. Fractal based quantification refines the 

measurement which can be implemented within a wider range of length scales.  

Previous investigators have quantified fracture surface by generating 3D structure by techniques 

like slit island method, stereo photogrammetry etc to quantify the surface roughness by fractal 
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dimensions. Direct quantification of microstructural and fractographic image has raised the 

question whether the gray level intensity image is the true representation of the surface 

roughness since the intensity image may contain noise which can limit the accuracy of the fractal 

analysis. Kube and Pentland [17] and later McGunnigle [18] have shown that surface roughness 

can be represented by fractal dimension estimated from its image spectra since fractal dimension 

is a differential parameter insensitive to high frequency noise. Their work, primarily in the area 

of image processing, needs to be introduced in materials fraternity for estimation of fractal 

dimension from intensity images directly. 

 

1.6 Objectives  

This thesis investigates scale invariant property of microstructural and fractographic intensity 

images and MBE signals of metallic materials and attempts to quantify them using fractal 

dimensions for evaluation of macro mechanical properties. In order to achieve this goal, 

following objectives are defined: 

• To study fractal properties of high resolution images of microstructures and fracture 

surfaces of materials obtained by the SEM. The images are obtained in secondary and 

back scattered electron emission modes, which are captured and converted to appropriate 

digital format.  

• To devise application routines and to carry out extensive validation study of three 

methods, namely Rescaled Range (R/S) analysis, Power Spectral Density (PSD) analysis 

and Wavelet analysis, that are employed for fractal analysis in this work. For validation 

of these analysis procedures, synthetic 1D signals and 2D images are simulated. While 

the Weierstrass cosine function, a standard function for generating fractal curve, is used 

for simulating fractal 1D signal, for simulating 2D images, fractional Brownian motion 

(fBm) surfaces are considered. 

• To examine whether microstructures and fractographs of High Strength Low Alloy 

(HSLA) steel aged at various tempering temperatures have fractal behaviour, and to 

investigate if different aging conditions change the fractal behaviour in a way similar to 

the manner of variation of material properties like hardness, yield strength and fracture 
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toughness. To develop appropriate structure-property correlations based on fractal 

mathematics for evaluation of materials. 

• To investigate whether MBE signal has fractal properties and to establish a non-

destructive protocol for quantifying microstructural damage by quantitative evaluation of 

MBE signals by fractal analysis. 

 

1.7 Thesis outline  

This thesis is organised into four parts: the first part is the theoretical background and literature 

review addressed in chapters 2 and 3 respectively; the second part is the image analysis module 

presented in three chapters from chapter 4 to chapter 6; the third part is the signal analysis 

module addressed in chapter 7. Finally, the last part contains the conclusions and future direction 

of research in chapter 8.  

Chapter 2 discusses the theoretical background of fractal mathematics and the definitions of 

parameters like the fractal dimension, D, or the Hurst exponent, H, for quantifying fractal 

objects. The H exponent represents self-similar or self-affine behaviour of images or signals. 

Concepts of self-similarity and self-affinity have been discussed in details. Available methods 

for fractal analysis are discussed briefly in this chapter. Since the scanning electron microscope 

(SEM) has been used for acquiring high resolution images used in this work, electron imaging 

techniques and signal-to-noise ratio for rendering the images on display devices have been 

discussed. Conventional methods for evaluating mechanical and magnetic behaviour of materials 

are also explained. A brief account of microstructural and fractgraphic images and their 

applications in materials research for evaluation of materials has been discussed. MBE signal 

analysis is one of the recently developed non-destructive material evaluation techniques. 

Discussion on MBE signal generation has been included in a separate section in this chapter. 

Chapter 3 reviews the related work in the area of fractal analysis of microstructures, fractographs 

and MBE signals.  

The second part of the thesis is the image analysis modules which are discussed in the next three 

chapters. Validation of the fractal analysis algorithms using synthetic signals and images are 

addressed in chapter 4. Comparisons of various fractal analysis methods are presented in chapter 

4, highlighting the robustness of the algorithms used in this investigation. Fractal analyses of 
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fractographs and microstructural images and the correlations between fractal dimensions and 

material properties are described in chapters 5 and 6 respectively.  

Part III deals with the time domain 1D MBE signal analysis. Fractal dimensions computed from 

the signals for the HSLA steel have been correlated with the magnetic and mechanical properties 

in chapter 7. 

Conclusions and future direction of research have been presented in the final part of this thesis in 

chapter 8. 
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2 

BASIC CONCEPTS AND BACKGROUND 

 

The term “Fractal” was first coined by Mandelbrot [1, 2] in 1975. The word originated from the 

adjective “Fractus”, from the verb “frangere”, meaning to break in Latin.  Since fractal 

dimension is the non-integral fractional dimension, the word “Fractus” is rhymed with 

“Fractional” to form the word “Fractal” for representing irregular and non-linear phenomenon be 

it a shape or an event. The degree of irregularity exhibited by the fractal is represented by the 

fractal dimension D and it remains the same at all scales in the mathematical sense. The scale 

independent behaviour of D makes it a useful tool for representing any forms of irregularity in 

nature. 

Fractal [1] and chaos [2] are the two sides of the same coin of a non-linear stochastic behaviour 

of any natural process. While fractal determines the inherent order, chaos represents disorder. 

There are fractals in chaos. Many natural processes which are presumably chaotic show fractal 

behaviour. For examples changes in weather, turbulence and oscillations, growth and 

propagation of biological species, satellite images of earth surface, images of microstructures, all 
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show fractal behaviour within certain scales of observations.  However more orderly signals used 

for medical diagnostics or to check structural health of engineering components may contain 

chaotic properties.  It is the self-similar or self-affine characteristic [3] that makes an event  or an 

object fractal.  

This chapter presents the definition of fractal dimension and the self-similar and self-affine 

property of the fractal objects. Physical significance of self-similarity and self-affinity in terms of 

surface roughness are discussed in details. An overview of the popular estimator of self-

similarity and self-affinity known as Hurst exponent [4] has been outlined here. A review report 

on various methods for computing fractal dimensions has been included. 

The accuracy of any computational method depends upon the quality of input data. In the present 

work, high resolution images captured by the Scanning Electron Microscope (SEM) are used as 

the input data.  This chapter addresses the factors that affect the contrast variations in the SEM 

images and the rationale for using SEM images for fractal analysis. Morphologies of various 

structural phases present in the microstructues of steel have been described and the effects of 

these on the mechanical properties are illustrated. Discussion on images of fracture surface also 

highlights the types of fracture in micro-scale and the typical fracture features in fractographic 

images have been highlighted. Additionally basic concepts of Magnetic Barkhausen Emission 

(MBE) signals, a Non Destructive Evaluation (NDE) method for material evaluation, have been 

included. 

 

2.1 Fractal property  

2.1.1 Fractal dimension 

Dimension signifies correlation between measured quantities and the unit of measurement. It can 

be seen that there is an inverse correlation between unit or scale (k) and the measured quantity 

(N). As the size of the measurement scale decreases, the measured quantity increases. This can 

be understood from the data presented in Table 2.1. The log (k) vs. log(N) data, when plotted, 

shows the linear property with the magnitude of slope equal to 1 signifying the topological 

dimension of the length.  
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Mathematically the correlation between the scale (k) and the measured quantity (N) can be 

written as 

 DkNkN −= 1
0 ).(.  (2.1) 

where N0 is the constant which is obtained for k=1.  

Table 2.1: Correlation between scale and measured quantity for distance of 23 km. 

Scale k Quantity, N Log(k) Log(N) 

km 1000 23 3 1.361728 

m 1 23000 0 4.361728 

cm 0.01 2300000 -2 6.361728 

mm 0.001 23000000 -3 7.361728 

micron 0.000001 23000000000 -6 10.36173 

nano 0.000000001 23000000000000 -9 13.36173 

In the same mathematical framework, fractal dimensions can be estimated for fractal objects.  

Fractal is defined as "a rough or fragmented geometric shape that can be split into parts, each of 

which is (at least approximately) a reduced-size copy of the whole," [1]. Fractal objects are 

generated by iteration to achieve precise geometrical fineness. For example, a triangle is 

transformed to non-linear shape using the principle constituent (PC) given in Figure 2.1 (a). Each 

side of the triangle is divided and reshaped using the PC to get 4 lines. This can be continued 

infinitely, by taking reduced PC, and the complex fine geometrical fractal in Figure 2.1 (b) can 

be generated. The correlation between scale and the measured quantity for this fractal object is 

given in Table 2.2. 

 

 
 

(a) Principle constituent (PC) (b) Fractal geometry generated by the PC 

Figure 2.1: Non-linear principle constituent and evolution of fractal object 
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Table 2.2: Correlation between scale and measured quantity for the fractal object in Figure 2.2(b) 

k N log(k) log(N) 
1 3 0 0.477121 

0.333333 12 -0.47712 1.079181 
0.111111 48 -0.95424 1.681241 
0.037037 192 -1.43136 2.283301 

The correlation between the scale (k) and the measured quantity (N) can be obtained using 

equation (2.1). The value for D is found to be 1.2619 and this is independent of k. Hence the 

length of the curve can be given by 

 2619.0
0 ).(. −== kNkNL  (2.2) 

Similar to Euclidean or Topographic geometry, fractal geometry allows measured quantity to 

change inversely with the unit of measurement scale; but the dimension, D, is always a non-

integer. The non-integer dimension is called fractal dimension. Objects having fractal dimension 

are called the fractal objects. These objects have the property that finer self-similar or self-affine 

(reduced-size copies of the whole) structure is revealed as we magnify them. This property 

makes the fractal function (used for generating fractal object) a non-differentiable function. In 

addition to self-similar or self-affine property, it is stated that fractal dimension should always 

remain between Topological dimension, DT, and Euclidean dimension, DE. While the topological 

dimension represents the lowest complexity, the Euclidean dimension signifies the highest 

complexity for any irregular shape or object. 

For determination of fractal dimension from a signal or image, following steps are followed: 

• A signal or image is read 

• Using a particular scale, k, a quantity, N, is measured for the signal or image 

• The data representing log(N) vs. log(k) is plotted. This log-log plot is called the 
Richardson plot. 

• A linear fitting of the Richardson plot within certain scale range gives the slope of the 
plot. 

• From the slope, fractal dimension D is computed. 

There are many variants of fractal dimension for characterizing fractal objects. Table 2.3 

presents definitions and mathematical formulations of some important variants of fractal 

dimensions [5]. It may be pointed out that Capacity dimension (D0), Information dimension (D1) 

and Correlation Dimension (D2) can be derived from the q-Dimension taking q as 0, 1 and 2 

respectively. 
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Table 2.3: Definitions and mathematical formulations of some important variants of fractal dimension 

 

Name Equations Remarks 

q-Dimension ( )
)1ln(

,lnlim
1

1
0

k

kqI
q

D
kq →−

= ; 

 where  

( ) ∑
=

=
N

i

q
ikqI

1

, μ  

where k is the box size, and iμ is the 
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probability that element “i” is populated. 

Based on qth order statistics. 
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dimension or Box-
counting 
dimension 

)ln(
)ln(lim0 k

ND
k +→

−=
ε

 

where N is the measured quantity and k is 
the scale of measurement. 

Also called Housdorff 
dimension, Hausdorff-
Besicovitch dimension or 
Matric dimension 
 

Information 
dimension )ln(

lim1 k
ID
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−=

ε
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Pi(k), is the probability that 
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Called probabilistic 
dimension. 
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Heaviside step function, Hv(x) is defined 
as 
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⎪
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0
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00
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xH v  

Based on second order 
statistics for representing q-
Dimension when q=2. 

Minkowski-
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dimension 

2
)ln(
)(lnlim

0
+

−
=

→ r
rFD

rM  

F(r)  is the area traced out by a small 
circle with radius r following a fractal 
curve. 

For all strictly self-similar 
fractals, the Minkowski-
Bouligand dimension is equal 
to the Hausdorff dimension; 
otherwise DM>D. 
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2.1.2 Self similarity and self affinity 

The terms self similarity and self affinity can be defined using the mathematical tool called 

Iterative Function System (IFS) [6] which was invented by J. Hutchinson [7]. IFS is used for 

constructing fractal objects, which essentially mean self similar objects.  A self-similar set, E, 

can be infinite or finite copies of itself which can be expressed as 

 ( )U
m

i
i EfE

1=

=  (2.3) 

In equation (2.3), E is the invariant set or attractor of the IFS, fi is the transformation function 

describing the relationship between the invariant set and the constituent parts. If there are 

contractive similarities between E and fi(E), then E is called self-similar. If fi are affine functions, 

then E is called self-affine. 

Two objects are said to be self similar if one is a union of a number of smaller similar copies of 

itself.  Figure 2.2 illustrates construction of the invariant set E. The initial geometry was a 

square, E. The transformation function fi defines a scalar transformation reducing its size and the 

shifting of origin inside E. Here f1 defines the top-left shift and f2 defines the bottom-right shift. 

 

 

Figure 2.2: Construction of the invariant set E 

E f1(E) 

f2(E) 

f1(f1(E)) 

f2(f1(E)) 

f1(f2(E)) 

f2(f2(E)) 
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The affine function [8] is defined as a function A: Rm→  Rm if there is a linear function L: Rm→  

Rm and a vector b in Rm such that 

 A(x)=L(x)+b (2.4) 

for all x in Rm. An affine function is the summation of a linear function and a translation. A 

linear function L: Rm→  Rm has following properties for any vectors x and y in Rm, 

(1) L(x+y)=L(x)+L(y) 

(2) L(ax)=aL(x) for scalar a. 

Figure 2.3 illustrates the self-similar and self-affine transformation of a square. Self-affine 

transformation is also called shearing transformation. It may be noted that self-similarity is the 

subset of self-affinity. 

 

 

Figure 2.3: Self-similar and self-affine transformation 

Self affine including self-similar geometry can be classified into three groups [9]: exactly self 

affine, quasi self affine and statistically self affine. Exactly self affine objects can be generated 

mathematically using the IFS as in equation (2.2); they are structurally and statistically same at 

different levels of spatial isotropic transformation. Quasi self similar objects found in natural 

objects like plants, biological organs, etc. exhibit a degree of irregularity, however they are 

exception rather than the rule. Statistical self affinity is abundant in natural objects. Satellite 

images of the Earth surface, microstructral and fractographic images are the examples of 

statistical self affinity within certain range of magnification. Figures 2.4 (a)-(d) illustrate 

different kinds of self affine fractal objects. 

Self-similar 
transformation 

Self-affine 
transformation 
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For modeling self-similar or self-affine fractal objects, the Hurst exponent, H [10] is used as the 

quantifier of complexity. The structural function describing self affinity can be written as 

 F1(x)-F1(y) ~ (x-y)H  (2.5) 

Where F1(x) and F1(y) are the two fractal objects, indistinguishable copies of the original object 

x and y respectively as shown in Figure 2.2. In equation (2.5), the structural function correlates 

the Euclidean distance in two successive generations of fractal objects. When H is equal to 1, the 

object is exactly self similar otherwise it is self-affine. It is therefore understood that self-

similarity is a special case of self-affinity. 

 

 

 

 

(a) Exactly self similar geometrical object (b) Quasi self similar natural object 

  

(c) Microstructure: Statistically self-affine  (d) Fractographs: Statistically self-affine 

Figure 2.4: Types of self-similar fractal objects 
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2.1.3 Hurst exponent: A quantifier of complexity 

Self-similarity represents order or symmetry whereas complexity identifies the chaos or entropy 

in a system. One is an inverse function of other. For quantifying complexity, Hurst exponent was 

proposed by Harold Edwin Hurst in 1951. It measures the linear volatility, trend or roughness of 

an observed geometric form, including time series data. Originally developed in hydrology to 

estimate optimum dam size for the Nile River based on the rain fall data over a long period of 

time; the work was reported in a classic paper by Hurst [11]. Hurst exponent, H(q), is defined as 

Hq =H(q), where q is the order of the moment of the statistical time series, g(t), where t=Δ t, 

2Δ t,…,NΔ t and N is the number of data in the time series. The definition of the structure 

functions Sq(k) [12] is given as 

 ( ) q
q tgktgkS )()( −+=  (2.6)  

where k is the lag and  is used to denote the average taken over a time window T>>k. Here, T 

is the maximum time attained by the system. 

Considering self-similar or self-affine property as given in equation (2.5), the structure function 

( )kSq  reduces to 

 ( ) )()()( qqH
q

q
q kCtgktgkS =−+=  (2.7) 

where the coefficient Cq  and the exponent  qH(q) are independent of k, but  depend on the order 

q and the parameter H(q). 

When q=1, the 1st order structure function, S1(k), defines the correlation between the lag k and 

the absolute mean relief, )()( tgktg −+  whereas the 2nd order structure function, S2(k),  

represents the correlation with semivariance, )(kΔ , as 

 
2)()(

2
1)( tgktgk −+=Δ  (2.8) 

The scaling behaviour of Sq(k) can be expressed [13,14] as 

 )()( qqH
q kkS ∝   (2.9) 
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When H(q) is independent of q, then a unique H can quantify a process. This is the 

characteristics of uni-fractal process. However, when H(q) is a function of q, the process is called 

multifractal. Simple Brownian motion is the process which will have H=0.5 irrespective of the 

order of moment q. However the fractional Brownian motion (fBm) will have H varying with the 

order of moment. When q=1, H(1) describes the scaling behaviour of the absolute values of the 

increments which is expected to be closely related to the original Hurst exponent. When 

H(1)>0.5, the trend of the time series is said to be persistent and for H(1)<0.5 it is antipersistent 

in nature. 

Physical significance of the parameter H can be appreciated by examining the affine 

transformation in three dimensions [15]. In practical sense, this transformation takes place during 

the creation of rough surface. This anisotropic affine transformation is represented 

as: zzyyxx zyx λλλ →′→′→′ ;; , where (x,y,z) is the Cartesian co-ordinate of a point which is 

transformed to ( )zyx ′′′ ,, . To maintain structural continuity, the transformation co-efficient 

(λy,λz) are correlated to λx by the scaling law 

 zy
xzxy
νν λλλλ ∝∝ ;  (2.10) 

When yz νν ≠ , the Hurst exponent is given as 

 yz
y

z vvH <= ;
ν
ν

 (2.11) 

In case of self similar surface yz νν =  when the value of H becomes 1 resulting to a constant 

fractal dimension. This makes quantification of surface roughness using H or D meaningless.  

Therefore to quantify surface roughness for exactly self-similar surface, H has to be considered 

as either  zν  or yν  [15]. 

The Hurst exponent, H is directly related to fractal dimension, D [9] by the following formula 

 D=DT + 1-H (2.12) 

For one dimensional time series data DT = 1 hence D = 2-H. For an image, D = 3-H. 
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2.2 Available methods for computation of fractal dimension 
There are numerous methods for computing fractal dimensions for 1D spatial or temporal data 

series and 2D images. These methods can be classified into four broad groups: 

 

 

Categories Methods 

Covering methods Dividers (Compass) method, Box-counting method  

Geometrical methods Slit Island method using Area-perimeter relationships 

Statistical methods Probability-density function, Information theory based 

method, Rescaled range analysis (R/S analysis) 

Spectral methods Power spectral density (PSD) Method, Wavelet method 

 

 

Different methods estimate different quantities and fractal dimension is the exponent of the 

power-law variations between the measured quantities and scales. For examples dividers method 

estimates length (L), box counting method counts number of boxes, slit island method needs area 

verses perimeter correlation. In case of statistical methods, different statistical parameters like 

semivariance, range, standard deviation, probability density functions are the estimated 

quantities. For spectral methods, power and energy components are computed. While many of 

these methods compute Capacity Dimension (D0) or Box counting or Housdroff dimension, 

some of them compute information and correlations dimensions. Description of these methods, 

the areas of applications, and their limitations are discussed in review literatures [16, 17]. A few 

important methods are presented in the following sections. 
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M.1: Method Name: Dividers (Compass) method [18-23] 

Applicable to: Curves e.g. cell membrane, coastline, grain boundary, and landscape edge. 

Formulation: The estimated length of the coastline is the product of N (number of rulers 

required to 'cover' the object) and the scale factor k. The power-law relationship between the 

measuring scale k and the length L is: 

 L = N0 k (1-D) (2.13a) 

 ( ) ( )kDNL log)1(log)log( 0 −+=  (2.13b) 

where N0=L when k=1. The fractal dimension (D) is estimated by measuring the length L of the 
curve at various scale values k.  
 

 

Figure 2.5: Dividers (compass) method. Two ruler lengths ( ) are shown in (a) and (b). The starting 

position is indicated by an arrow. 

 

Limitations: 

• This method is not well-founded theoretically, and furthermore it is exact only for 

statistically self-similar curves  

• Results will vary for different starting points  

• Log (L)-log (k) plot using equation (2.13b) may not have constant slope. 

• Variable slope either indicates the operational scale of different generative processes 

or reflects the limited spatial resolution of the data being analyzed. 
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M.2: Method Name: Box-counting method [24-30] 

Applicable to: Overlapping curves, structures lacking strict self-similar properties. 

Formulation: Number of boxes, N, of size k covering an object is the function of the size of the 

box. The correlation can be written as 

 N = N0 k –D (2.14a) 

 ( ) ( )kDNN log*log)log( 0 −=  (2.14b) 

where N0=N when k=1. The fractal dimension (D) is estimated by counting the number of boxes 
at various box sizes, k.  
 

 

Figure 2.6: Two box 'lengths' are shown in (a) and (b). Box size, k in (a) is greater than the same in (b).  

 

Limitations: 

• Placement of boxes will change the total count N, hence statistical variations of D 

needs to be estimated by randomly placing the boxes. 

• Limited resolution of data affects D values. 

• Gives inaccurate results for surfaces. 

• Log (N)-log (k)  plot by equation (2.14b) may not have constant slope. 

• Variable slope either indicates the operational scale of different generative processes 

or reflects the limited spatial resolution of the data being analyzed. 
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M.3: Method Name: Slit island method using area-perimeter relationships [31-41] 

Applicable to: Black & White images  

Formulation: Shaded object in Figure 2.7 is considered as island and white is lake. Island area, 

A, is computed by counting number of black pixels. Perimeter, P, is estimated by counting the 

number of pixels covering the perimeter. The area perimeter relationship is given as 

 P = P0 A D/2 (2.15a) 

 ( ) ( )ADPP log*
2

log)log( 0 +=  (2.15b) 

where P0 is the scaling constant and D is the fractal dimension of the coastline of the island. 
 

 
 

Figure 2.7: Area-perimeter relationships. Landscape of pixel 'islands'. The area of each island in shaded, 
and its perimeter is indicated by a solid black line. 

Limitations: 

• Pixel of the digital image is rectangular resulting in  biased estimates of D due to this 

'rectangularization' for small island (A<30). 

• Edge effects are also a problem. Islands touching the edges of the image gives biased 

estimates of D. 

• “Staircase” effect of perimeter of 45o orientation since number of pixels required is 

more. 
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M.4: Method Name: Probability-density function [28,42-43] 

Applicable to: Black & white image   

Formulation: A square grid of size (k x k) is slid over the image from left to right, top to bottom 

by shifting its position by one pixel from its previous one. Let N(k) be the number of black pixels 

at a particular position of the square grid where N(k)<=k2. The first order moment, M(k), of the 

probability density function P(k) of the N(k) values for different positions of the square grid can 

be derived by using the following formula 

 ( )∑
=

=
)(

1
.)(

kN

i
i kPikM  where ( ) 1

)(

1
=∑

=

kN

i
i kP  (2.16a) 

M(k) is often termed the 'mass dimension'. The relationship between the first order moment 

value M(k) and k may be given by 

 DkkM ∝)(  (2.16b) 

 

Figure 2.8: Probability-density function.(a) Pixel map (black regions), showing a representative 3x3 sliding 
grid for which the count, N(k) = 4; (b) Frequency distribution of pixel counts for a 3x3 window; (c) 
Frequency distribution of pixel counts for a 5x5 window. 

Limitations: 

• Gives poor estimates of fractal dimension more than 2.5. 

• Edge effects are a problem. Increases in the window size (k) result in exclusion of a 
greater proportion of pixels along the periphery of the map. 
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 M.5: Method Name: Information Theory based method [44-48] 

Applicable to: 1D spatial or temporal series; Binary images 

Formulation: This method is similar to the previous method M.4 where square box of size k is 

convoluted on a binary image or a set of data series. Within each box, numbers of dark pixels are 

counted as ni. Each count is expressed in terms of probability 

 
N

kn
kP i

i
)(

)( =  (2.17) 

where N is the total number of points in the set. Shannon entropy, S(k), and Simpson diversity 

index, C(k), are computed to estimate Information dimension, D1, and Correlation dimension, 

D2.  

Shannon entropy and the power law 
correlation 

Simpson diversity index and the power law 
correlation 

∑
=

−=
kN

i
ii kPkPkS

1
)(log)()(  

1)( DkkS ∝   
D1 is the information dimension. 

∑
=

=
kN

i
i kPkC

1

2)()(  

2)( DkkC ∝  
 D2 is the so-called correlation dimension. 

 
 

 
 

Figure 2.9: Point pattern analysis: information and correlation dimension. (a) A self-similar point pattern 
(b) Number of points per box for box size 5 x 5. 
 

Limitation: 

• Edge effects are a problem. Increases in the window size (k) result in exclusion of a 

greater proportion of pixels along the periphery of the map 

(a) (b) 

Grid 
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M.6: Method Name: Rescaled range analysis (R/S analysis) [49-59] 

Applicable to: 1D spatial or temporal series, 2D images 

Formulation: For 1D spatial or temporal series, X(t), average deviation is computed for a 

segment of length, k, of the data series as XktXktY −= ),(),( , t=1,2,3,4,…,k where 

X = ( )∑
=

k

t

tX
k 1

1 . Range, R(k), and standard deviation, S(k), for the data segment, Y(t,k) are given 

as 
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The rescaled range of an irregular time series X(k) can be defined as 
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 (2.19) 

where fractal dimension, D=DT+1-H. For 1D spatial or time series DT =1 and for 2D image 

DT=2. 

 

Figure 2.10: Binary segmentation of data series for the RS analysis 

Limitations: 

• Removal of average trend of the data eliminates low frequency components. 

• Higher k has greater effect on R/S analysis than the smaller scale. 
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M.7:  Method Name: Power Spectral Density (PSD) Method [60-65] 

Applicable to: 1D spatial or temporal series, 2D images 

Formulation: For 1D spatial or temporal series, X(t), the Fourier transform, G(f), is given as  

 ∫
∝

∝−

−= dtetXfG fti π2)()(  (2.20) 

For a finite time interval, N where 0<t<N, the power spectral density, P(f),  is computed as 

 
N
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For 2D image, frequency f has two orthogonal components fx and fy.  

For fractal object, PSD can be expressed as a function of frequency by 
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where DT is the topological dimension and the fractal dimension, D=DT+1-H.  
 
 
 

 

 

FFT 

 

 

 

Figure 2.11: Frequency vs power spectral density 

 

Limitations: 

• Often finite size effect is seen in low frequency level or large length scale. 

• At high frequency, the power spectrum contains high level of noise. 



 31

M.8: Method Name: Wavelet Method [66-75] 

Applicable to: 1D spatial or temporal series, 2D images 

Formulation: For 1D spatial or temporal series, X(t), can be expressed as 
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where j0 is the arbitrary starting scale, cj0(k) is the average (scaling) coefficient and dj(k) is the 

detailed (wavelet) coefficient and j is the level of decomposition. Average energy for a 1D series 

of finite duration ( )jNt ≤≤1  is computed as 
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The correlation between average energy, E(j), computed by the Wavelet analysis and the level, j, 

is given as 
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where DT is the topological dimension and the fractal dimension, D = DT + 1-H. 

 

 Figure 2.12: Wavelet transformation 

 

Limitations: 

Poor discrimination capability since data averaging takes place with the level of decomposition
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2.3 Image rendering by Scanning Electron Microscope 

This section gives a brief overview of the Scanning Electron Microscope (SEM) which is used 

for generating intensity images of metallic materials surfaces. High resolution images of 

microstructure of materials are known as micrographs. It is important to have a clear 

understanding of the input data (image) especially the approximations and assumptions being 

considered for final image rendering. Since, in this investigation, the contrast variations of these 

images are used for devising the quantification procedure, correlations between image intensity 

variations and low level electron signals have been presented. 

 

2.3.1 Basic principle of SEM 

The SEM generates micrographs by scanning the surface of a specimen with small electron beam 

synchronously with the electron beam in a cathode ray tube (CRT). The image contrast is due to 

topographic variations and atomic number differences in the specimen.  

The instrument produces finely focused electron beam to irradiate flat specimens. During 

irradiation, the specimen releases several types of radiation such as 

• Secondary electrons 

• Backscattered electrons 

• Low pass electrons 

• Auger electrons 

• Light 

• Characteristics x-rays 

• Continuous x-ray spectrum 

The shape, chemical composition and the crystal orientation of the irradiated volume determines 

the intensity of these radiation signals.  

Detailed discussion of all these radiation signals can be found elsewhere [76,77]. Only the 

relevant part i.e. the signals generated due to the secondary electrons and the backscattered 

electrons has been included here. In both the cases the generated electron beam scans over an 

area of a specimen; the radiated electrons are capture by detectors and then converted into 

electrical signals. These signals are amplified, processed and finally sent to the display unit for 

rendering. Figure 2.13 shows the block diagram indicating the signal path. 
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Figure 2.13: Signal path in SEM 

The intensity of the signals, contrast variations as well as the amount of information contained in 

the image depend upon the following factors 

• Beam diameter 

• Magnification 

• Depth of focus. 

Beam diameter determines the amount of incident energy of the probe electrons. Controlling the 

beam diameter, minimum resolution of the SEM can be achieved. The total beam diameter, d, is 

estimated by 

 2222
0

2
fcs ddddd +++=  (2.26) 

where d0 is aberration less beam diameter at specimen, ds is diameter of disk of confusion due to 

spherical aberration, dc is diameter of disk of confusion due to chromatic aberration and df is 

diffraction effect or the Airy disk diameter. Considering α  as half the aperture angle of 

illumination and λ  as the wavelength of the electron beam, df  can be expressed as 

 
α
λ22.1

=fd  (2.27) 

As the beam diameter decreases, the current carrying capacity of the beam also decreases. 

Typically 10-11 amp current is required to have a beam diameter of 100 A to focus the same area 

on the specimen. To achieve higher resolution, it is not possible to minimize the beam diameter 

greatly as for the smaller beam diameter; electron energy carried by the beam also gets reduced. 

The wavelength λ of the electron beam is inversely proportional to the energy carried by them 

i.e. 

 
πλ2
heV =  (2.28) 

where h is the Plank’s constant. 
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It can be seen from equations (2.26), (2.27) and (2.28) that, for the smallest beam diameter, the 

wavelength is reduced for which the electron energy increases. To accommodate high electron 

energy, beam diameter subsequently increases. Therefore beam diameter can not be reduced 

indiscriminately to achieve better resolution since it is limited by the wavelength of the energy 

quanta carrying by the beam. 

Magnification is controlled by varying the size of the area that is scanned on the specimen. It 

can be varied from 15 to 100,000 times or more. Low magnification micrographs can not be 

photographically enlarged or zoomed to obtained detailed information. This is because the 

magnification is controlled by changing the beam diameter. For lower magnification, beam 

diameter is enlarged. Hence the resolution of the image formed on the display unit decreases. 

Depth of focus determines the range (FD in Figure 2.14) within which the image remains 

focused. Since the angle of incidence (A/2W) can be lowered substantially for the electron beam 

with the smaller wave lengths, the depth of focus gets increased. This gives a good range of 

contrast or intensity variations which shows the topographic 3D view of the SEM images. In 

Figure 2.14, P is the ratio between the pixel diameter and magnification, Mx, which is 

100μ m/Mx for SEM. Figure 2.15(a) shows the optical image and (b) the SEM image. The 

clearly visible topographic variations in (b) are due to the larger depth of focus of the SEM. 

 
Figure 2.14: Depth of focus (FD) 

(Image take from http://www.emal.engin.umich.edu/courses/semlectures/focus.html) 

FD FD/2 



 35

 

Figure 2.15: (a) Limited depth of focus in optical image (b) Large depth of focus in SEM image 

(Taken from J.I. Goldstein et al., eds., Scanning Electron Microscopy and X-Ray Microanalysis, (Plenum 

Press, NY, 1980).) 

2.3.2 Signal to noise ratio in SEM images 

For generating image signals, the radiated electrons are detected by the noise free scintillator-

photomultiplier detector system. The number of detected electrons determines the amount of 

current generated in the detector which is the raw signal prior to the allocation of gray level 

intensity values. In case of low magnification image, the beam diameter is increased. The 

detected electron count increases and the noise pulse can be easily reduced. However, for high 

magnification image, since the beam diameter is small, the detected electron count is of limited 

range. Reducing the noise level will further reduce the count resulting in a very dark image. Thus 

a minimum level of noise pulses is accepted for generating the electron image with acceptable 

contrast variations.  

An image is a 2D spatial signal of size M x N with G discernable grey levels. For n bit image G 

is equal to 2n. The minimum resolution of the image depends upon the size of a pixel or the 

picture element on the display unit. The intensity value realized by a pixel contains actual signal 

quanta and the noise pulse. Allocation of gray levels is therefore made on the basis of equal 

reliability levels i.e. keeping the signal-to-noise ratio (SNR) constant from the darkest (0) to the 

brightest (2n) zones of the image. 

The SNR is defined as the ratio between the root mean square(rms) signal and the rms 

fluctuation due to noise. The probable error, P(e) for one unit gray level change on account of 

noise is related to the SNR by the equation 
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where the error function is defined as 

 ∫ −=
x

y dyexerf
0

21)(
π

 (2.30) 

In equation (2.29), K is the SNR ratio between the signal quanta ( in ) and the rms 

fluctuation( in ) caused by noise, where “i” subscript is used to specify the position along the 

signal path within the SEM. For instant n1 signifies the number of electron in the incident beam 

and n5 the number of signal quanta in the photomultiplier as illustrated in Figure 2.13. The 

position at which minimum ni is obtained is called the noise bottleneck.  Solving equation (2.29), 

it can be found that for K=5, the gray level fluctuation is 1 in 160, which is acceptable for a low 

magnification micrographs. For higher magnification micrographs, poorer SNR (K<5) may be 

acceptable to get an image on the CRT.  

For assigning contrast variations in the image displayed at the CRT, the minimum and maximum 

signal quanta are considered at the location where noise is maximum i.e. at the noise bottleneck. 

The minimum is referred as blackn  and maximum is referred as whiten . The range between black 

and white ( Aδ ) is defined by  

 
1n
nn blackwhite

A
−

=δ  (2.31) 

where 1n  refers to the number of electrons in the incident beam. The background range ( Bδ ) is 

given as 

 
1n

nblack
B =δ  (2.32) 

To maintain equal reliability levels, the SNR is kept constant which is expressed in terms of 

blackn , whiten  and the maximum grey level G. The SNR, K is written as 

 ( )blackwhite nn
G

K −=
2  (2.33) 
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It is possible to find out the ratio between beam current (ibeam) required for an image and the 

minimum beam current (imin) in terms of whiten  and blackn  as 

 
A

beam ii
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min=  if Bδ << Aδ  (2.34) 

         = 
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Bi
δ
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min  if Bδ >> Aδ  (2.35) 

where 
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222

min 4t
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where t1 is the total time available for recording the image, N2 is the number of picture elements 

and e is the electron charge. 

It may be noted from equation (2.36) that for larger image (N), high SNR (K), high definition 

image (G) and faster scan rate (t1), minimum beam current will increase. If the background 

range, Bδ , is less than the available range, Aδ , of allocated gray levels, it can be understood from 

equation (2.34), that the beam current is reduced. 

 

2.3.3 Resolution and contrast in SEM images 

Resolution and contrast in an SEM image give the morphological and structural variations in the 

microstructure of the specimen.  How closely the surface morphology and the image signal are 

interlinked, depends upon the beam diameter. To obtain a noise less image, beam diameter needs 

to be standardized. The convention is that for a particle size of diameter d1 and beam diameter of 

d2, the apparent size of the particle in the image will be 2
2

2
1 dd + . To get a noise less image 

the beam diameter should be equal to or greater than the particle size. Hence for a particle size 

and beam diameter of d, the apparent size of the particle will be 2 d. 

There are many ways by which the video waveform can be reconstructed to form an image. 

Intensity modulated image is the commonly used method in which the brightest part corresponds 

to the part of the specimen where the signal quanta is the highest. Conversely the lowest signal 
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gives the darkest spot on the image. For showing the surface topography, secondary and 

backscattered or low-pass images are obtained. To observe the shape of a rough surface, like 

fracture surface, secondary electron image is better than the other two. However for viewing the 

flat surface like microstructure of materials backscattered or low pass images are better. 

 

2.3.4 Secondary electron image 

Secondary electron image provides high-resolution imaging of topography of the specimen 

surface. The electron beam striking on the surface causes scattering of electrons of different 

energy bands. The low energy secondary electrons are collected by the positively charged 

collector and transformed to image signal. Larger the area of interaction between electron beam 

and the specimen surface, greater the possibility of scattering of electrons resulting to brighter 

area on the micrographs. The secondary electrons are of energies less than 50ev. Secondary 

electrons escape from the top 15nm of the specimen independent of the accelerating voltage. The 

orientation of surface features influences the number of electrons that reach the secondary 

electron detector. Sharp edges or corners will appear brighter because of the additional secondary 

electron emission due to low angle of incidence between incident beam and the surface. The 

secondary electron image resolution for an ideal sample is about 3.5 nm. 

 
 

Figure 2.16: A schematic drawing of the beam-specimen interaction volume (Ref: R. Johnson, 

Environmental Scanning Electron Microscopy - An introduction to ESEM, Robert Johnsson Associates, El 

Dorado Hills, CA, 1996) 
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2.3.5 Back scattered electron image 

Back scattered electron (BE) image provides information about composition of elements as well 

as surface topography. BE images can be obtained from a relatively flat surface by the elastic 

interactions between the sample and the incident electron beam. These high-energy electrons, 

more than 50eV, can escape from much deeper than secondary electrons and collected by a pair 

of detectors. Image contrast for the BE image is determined by the intensity (number) of 

elastically scattered electrons collected by the detectors. To get elemental information, signal 

acquired by the pair of detectors are added. For higher atomic number material back scattered 

electrons are more than low atomic number material. Hence high atomic number elements are 

seen brighter in the BE image. Excellent topographic information of the specimen surface can be 

obtained in BE mode by using the difference between two signals captured by the detectors. 

Backscattered electrons escape from approximately 40% of the total electron penetration. The 

optimum image resolution for backscattered electron imaging is about 5.5 nm.  

 

2.4 SEM image and surface roughness 

SEM images are formed due to the scattering of electrons from the surface of the sample. It was 

mentioned that the image intensity depends upon the beam current which is proportional to the 

variations in the number of electrons captured by the detectors, as given in equations (2.34) and 

(2.35). The perception of the shape of an object, thus, comes from the differential electron 

scattering and detection in the SEM. There is a similarity between electron imaging and optical 

imaging. While in optical imaging, light is the source and photon is captured for the image 

formation, in electron microscopy, electrons are the image forming units. The scattered electrons 

are analogous to photons reflected at the surface. In optical imaging, reflected light intensity is 

maximum when the reflected ray is perpendicular to the surface whereas in electron imaging it 

should be parallel. The mathematical formulations for image formation in both the systems are 

same. In SEM, the formulation is simplified as there is uniform illumination and the projection is 

often near orthogonal. 

The shape of a surface is perceived due to the differential reflectance of light rays or electrons 

from the surface which depends upon the angle of incidence (i), angle of emergence (e) and the 

phase angle (g) between the incident ray and the emergent ray as given by the Lambertian 
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reflection geometry [78] shown in Figure 2.17. In the context of SEM, rays are analogous to the 

paths of electrons.  

 

Figure  2.17: Lambertian reflection geometry showing incident (i), emittance (e), and phase (g) angles 

Considering I, E, G are the cosine of the angles i, e and g respectively the reflectivity function, 
( )GEI ,,φ is written as 

 ( ) ( )rA
rbGEI )(,,
′

=φ  (2.37) 

where )(rb ′ is the intensity measured at the image point, A(r) is the incident light intensity. Here 

( )GEI ,,φ  is a functions of x, y, z, p and q, where (x,y,z) are the spatial co-ordinates of the object,  

r is the corresponding polar coordinate, r ′  is the polar coordinate at image plane, x
zp ∂
∂= , 

y
zq ∂
∂=  and z is the elevation of the surface at (x,y). The surface gradients p and q can be used 

to specify the surface orientation. The surface height represented by z(x,y) has a unique normal, 

n, with the components of surface gradient p and q. A unit step along x direction ( 1=∂x ), when 

0=∂y will give the surface elevation p ( )xpz ∂=∂ . , similarly for qzyx =∂=∂=∂ ,1,0 . Thus the 

unit surface normal, n, vector is the cross product of the two tangent of the vectors [1,0,p]T and 

[0,1,q]T, given as 
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Figure 2.18 shows the details of the geometry of image illumination and projection in the 

imaging system, where f is the focal length. 

 
 

 
 

Figure 2.18: Details of the geometry of image illumination and projection in the imaging system. 

Equation (2.37) represents a first-order nonlinear partial differential equation [78] with two 

independent variables (x,y) of the form: 

 ( ) ( ) 0)(,,),,,,( =′−= rbGEIrAqpzyxF φ  (2.39) 

The solution of equation (2.39) can be obtained by expressing an equivalent set of five 

differential equations: 
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Here, s is the parameter which varies with the distance along known characteristics curves (a set 

of curves specifying boundary condition for the reconstructed image) on the object.  
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For the SEM,  the set of five differential equations in (2.40) simplified to  
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In equation (2.41), n is the inward normal to the surface at the point O given by equation (2.38), 

bx and by are the two components of the surface elevation related to the object plane, A is the 

incident intensity of the electron beam and Iφ  is the reflectivity of the electrons. The surface 

elevation at object plane in Cartesian coordinate (bx, by, bz) is related to the image intensity (b'x, 

b'y, b'z)  and the correlation can be given as 
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It may be noted that the intensities measured from the image do not locally determine the 

normal. The intensity is related to the magnitude of the first derivatives, and the gradient of the 

intensity is related to the second derivatives of the distance to the surface. 

 

2.5 Basic image processing techniques 

Digital images captured by the SEM are often pre-processed to enhance image quality for 

discrimination and classification of features. Two basic preprocessing methods such as 

histogram equalization and binarization have been used in this investigation to observe the effect 

of preprocessing on the fractal dimensions estimated by image analysis. While histogram 

equalization enhances the image quality, binarization converts the gray scale image to black and 

white image. An account of these two basic image processing techniques is given below. 

2.5.1 Histogram Equalization 

Image histogram is the plot of gray level values along the x-axis versus the frequency of 

occurrence of the gray level values along the y-axis.  When the image histograms were plotted 
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for the fractographs, it was found that the image brightness range did not cover the entire 0-255 

range, which is available for a gray-scale image. This means the available gray levels are not 

used efficiently.  Therefore, in order to use the available gray levels efficiently, histogram 

equalization is employed.  Histogram equalization method presumes that an image looks better if 

the gray levels of the pixels are distributed uniformly over the available gray level range, i.e. the 

histogram of the image is flat. For applying histogram equalization method on digital images, 

probability density function is used in discrete form which is given by the expression [79] 

                                                          ( )
n
n

rP k
kr =                                                                (2.45) 

where kn  is the number of pixels having a particular gray level kr , k varies between 0 to (L-1) 

and n is the total number of pixels in the image. Here, L is the total number of possible gray scale 

in the image. Figure 2.19 shows the original image, the histogram equalized image and the plot 

showing the corresponding histograms. 

 
Figure 2.19: (a) The original fractographic image, (b) The histogram equalized fractographic image, 

(c) Histogram of (a), d) Histogram of (b). 
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The original gray level kr  can be mapped to a discrete version of the new gray level ks by using 

the following cumulative summation formula: 
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The equation (2.46) maps the gray level rk of the input image to the discrete gray level sk of the 

output image. It may be pointed out that both the gray levels rk and sk are normalized and 

presented in the domain of [0,1]. To get the actual gray levels, they are to be mapped within 

[0,L]. The plot of Pr(rk)versus rk is called the histogram and the transformation given in equation 

(2.46) is called histogram equalization.  

2.5.2 Binarization 

The most common way of converting gray scale image to binary image is by discrimination or 

thresholding.  This is called binarization. Figure 2.20 shows the original fractographic image and 

the binarized image obtained using MATLABs “im2bw” function. 

Manual setting of thresholds is most often accomplished interactively in standard image analysis 

software and it is the user’s responsibility to select appropriate threshold values to delineate the 

features of interest. Error in such threshold settings is liable to cause bias in the measured 

parameters. For instance, if the manual threshold is set lower than the actual threshold value then 

the size of the object will be reduced.  Use of the same settings on different images from the 

same or similar samples may not be appropriate if the overall brightness level or contrast 

changes, or if the sample preparation is different.  This can be a major source of error in the final 

results.  Automatic thresholding [79] functions are available in standard image processing 

software to avoid such errors. 

 
Figure 2.20: (a) The original fractographic image; (b) The binarizsed image obtained using MATLABs 
“im2bw” function. 
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2.6 Mechanical and fracture properties of materials 

This section describes various macro-mechanical and fracture properties [80-83] which have 

direct relevance to this thesis. Some popular models addressing the effect of microstructural 

characterizing parameters such as grain size, micro cracks, dislocations, voids and distribution of 

second phase particles on the macro properties have been highlighted. Brief discussion on 

fractographs and micrographs are included to highlight the effectiveness of these images in 

material research.  

 

2.6.1 Mechanical properties 

When a force (F) is applied on an object, displacement LΔ takes place. In the elastic case, there is 

a linear correlation between force and displacement, which can be written as LkF Δ= , where k 

is the stiffness of the material. 

The force per unit area is the stress (s=F/A) and the increment of displacement per unit original 

length (L) of the object is the strain ( )LLe /Δ= . The mechanical properties comprise of 

hardness, various stresses and strains; the fracture properties deal with the energy required for a 

material to fracture and to its ability to resist propagation of cracks. 

For determining mechanical properties of materials, engineering tensile test is performed on 

laboratory specimen. For continually applied uniaxial tensile load (F), elongation ( LΔ ) are 

monitored using strain gauge attached to the specimen. Data obtained from this test is used to 

generate load-elongation curve from which engineering stress-strain curve is constructed. The 

stress used in the curve is the average longitudinal stress in the tensile specimen which is 

obtained by dividing F by the original area (A0) of the cross section of the specimen. The strain 

used for the engineering stress-strain curve is the average linear strain obtained by dividing the 

elongation of the gauge length of the specimen ( LΔ ) by the original length (L0). The engineering 

stress (s) and strain (e) relations are given as 
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The relations given in equation (2.47) are based on the original length (L0) or area (A0) which 

does not correctly represent the true deformation behaviour of materials since during 

deformation cross sectional area gets reduced or gauge length increases. For representing true 

stress-strain behaviour, the engineering stress and strain need to be transformed to true stress 

(σ ) and strain (ε ) using the following equations: 

 ( ) ( )11
0

+=+= ese
A
Pσ  (2.48a) 

 ( )1ln += eε  (2.48b) 

Mechanical properties that are estimated from an engineering stress-strain curve are ultimate 

tensile strength (UTS), yield strength (YS), percentage elongation (ef) and reduction of area (q). 

In addition Modulus of Elasticity (E) or Young’s modulus, fracture stress ( fσ ), fracture strain 

( fε ), necking strain ( nε ), strain hardening coefficient (n) and hardness (Hv) are some of the 

useful mechanical properties addressed in this work. Figure 2.21 shows engineering stress-strain 

curve where four distinct regions can be identified. The initial zone up to yield strength is elastic 

region. Beyond the elastic region, the plastic region consists of the yielding, strain hardening and 

necking regions. Uniform elongation of the specimen is found up to UTS after which necking or 

thinning out of the specimen starts and continues up to fracture. 

 

Figure 2.21: Engineering stress-strain curve showing tensile specimen during (a) strain hardening  and 

(b) necking. 
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Modulus of elasticity (E): The slope of initial linear part of the stress-strain curve is the modulus 

of elasticity or Young’s modulus.  It can be given by the expression- 

 
e
sE =  (2.49) 

Ultimate tensile strength (UTS): Ultimate strength (su) of the material subjected to tensile 

loading.  It is the maximum engineering stress developed in the tension test given by  

 
0

max

A
F

su =  (2.50) 

Yield strength (YS): Indication of the maximum stress that can be developed without causing any 

plastic deformation shown in Figure 2.21. Up to yielding, material follows linear stress-strain 

behaviour within the elastic region. It is also known as yield stress. 

Percent Elongation (ef) and Reduction of area (q): These are the measure of ductility which 

shows the extent of deformation a material can withstand without fracture. These properties 

indicate the plastic flow behaviour of material.  Both the properties are estimated after the 

specimen has fractured when the change of gauge length is fLΔ  and the change of area is fAΔ . 

Percent elongation and the reduction of area are given as 
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True Fracture stress ( fσ ): The stress that is applied to fracture the tensile specimen. This stress 

is well below the UTS of the material when expressed on an engineering stress-strain curve. The 

reason is, beyond the UTS there are local stress intensification leading to formation of necks and 

a consequent load drop due to a fast reduction of the cross sectional area. Subsequently the 

necked area experiences stress triaxiality and the specimen is no longer under a truly uniaxial 

load.  

True uniform strain ( uε ): The uniform strain is the strain up to the maximum load (prior to 

necking), when the cross sectional area is Au. The strain is given as 

 
u

u A
A0ln=ε  (2.51) 



 48

True Fracture strain ( fε ): The maximum true strain that the material can withstand before 

fracture. In a highly deformable or plastic material, the fracture strain is high. For brittle 

materials, the fracture strain is nearly the same as the uniform strain ( uε ).  
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==
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f
f 1
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True local necking strain ( nε ): The true local necking strain is the difference between fε and uε  

which can be estimated from the cross sectional area Au when the load is maximum.The 

relationship of fracture strain and uniform strain are given below: 

 
f

u
ufn A

A
ln=−= εεε  (2.53) 

Strain hardening exponent (n): The stress-strain behaviour of materials which is represented by 

the stress-strain curve has three regions. The first region up to the yield point, is the elastic 

region; the next region is the uniform plastic deformation region up to UTS, and beyond this and 

up to fracture is the unstable plastic deformation region. In the uniform plastic region, the true 

stress-strain curve can be expressed using simple power curve relation given as 

 n
xK εσ =  (2.54) 

where n is the strain hardening exponent and Kx is the strength co-efficient. The strain hardening 

exponent is found to be equal to true uniform strain uε .  

Hardness (Hv):  This property implies resistance to permanent or plastic deformation for a 

material. Hardness can be of different types. Here indentation hardness is addressed and the test 

to measure hardness is called Vickers hardness. The standard test method generates Vickers 

hardness (Hv) which is given as 

 2

854.1

xL
FHv =  (2.55) 

where F is the applied load and Lx is the average length of the diagonals of the indent produced 

by the square base diamond pyramid indenter. 
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2.6.2 Fracture properties  

Fracture properties presented in this section are K1C, fracture toughness for brittle material, J1C, 

fracture toughness for ductile material estimated from experimental J-R curve often called R-

curve and impact toughness (Kd). 

Cracks or defects in materials are responsible for stress intensification. The stress fields ahead of 

the crack tip at distance at point X with polar co-ordinate (r, θ ) and crack tip radius ρ shown in 

Figure 2.22 can be given as 
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where yx σσ , and yxτ  are the normal and shear components of 2D stress fields and KI is the 

mode I stress intensity factor. 

 

Figure 2.22: Crack tip with tip radius ρ  

Ahead of the crack tip, there are three zones which signify three different fracture mechanisms. 

Figure 2.23 shows the three distinct stress intensification zones ahead of the crack tip. Just ahead 

of the crack tip, there is the region of intense plastic zone which is called fracture process zone 

(FPZ). The next region is the plastic zone (PZ) and beyond this is the elastic zone (EZ). When 

there is very insignificant plastic deformation or yielding in the material (EZ>>PZ), the fracture 

is in the linear elastic fracture mechanics (LEFM) domain. For large plastic zone(PZ>>EZ), the 

fracture is governed by the elastic plastic fracture mechanic (EPFM) principles. 

θ

ρ

r 
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Figure 2.23: Three distinct zones ahead of the crack tip 

Mainly two types of fracture have been found in various materials, i.e., cleavage fracture and 

ductile fracture. Cleavage fracture generally occurs through formation of steps like cleaves. 

Since a cleavage fracture is usually associated with little plastic deformation, it is called brittle 

fracture. But the term brittle fracture is often generalised to all fractures with little plastic 

deformation, although the final separation may occur in a ductile manner. Ductile fracture 

generally occurs when the PZ is significantly large. 

In case of brittle fracture, PZ is insignificant compared to the EZ and the fracture toughness [83] 

is expressed by the following equation  

 ⎟
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faK c
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where cσ is the critical stress, ac is the critical crack length at which the specimen has fractured 

and f(ac/W) is a factor related to the geometry of the specimen having width, W. Typical three 

point bend (TPB) geometry is shown in Figure 2.24. 

For ductile fracture, J-integral (fracture energy per unit crack extension) is defined as the strain 

energy (dU) required for an infinitesimal crack (da) to grow 
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where B is the thickness of the specimen. The J signifies the fracture resistance of a material in 

the EPFM domain. 

 

Figure 2.24: Typical three point bend (TPB) geometry 

The fracture behaviour of a material including crack initiation and propagation can be described 

by the R-curve which is essentially J versus da (extension of crack length) plot. This method 

provided a way to analyze fracture behaviour of an elastic–plastic (ductile) material. The ASTM 

[84] procedure for J-R analysis divides J-resistance of a material into elastic and plastic 

components:  

 J
R 

= J
el 

+ J
p1 

 (2.59)  

where the elastic component J
el
 is given by 
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where Ka is the stress intensity factor for crack length a determined by equation (2.57), γ  is the 

Poission’s ratio and E is the modulus of elasticity. The J
p1

 is determined for TPB specimen using 
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where, A is the area under load-displacement curve during the J-integral test, b is the remaining 

ligament (W-a) of the specimen. Typical load displacement curve and corresponding R curve are 

shown in Figure 2.25. 
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Figure 2.25: Load-displacement plot and corresponding J-R curve. LLD stands for load line displacement. 

When Kc and Jc satisfy some predefined criteria related to minimum specimen size requirement 

[82,83], they are called KIC and JIC fracture toughnesses of brittle and ductile materials 

respectively. While JIC denotes the energy required for a crack to initiate propagation, KIC is 

related to the critical stress and critical crack length at fracture.   

The ductile fracture toughness, JIC is correlated with the micro structural parameters like 

characteristics length, l0, which is the average spacing between microvoids ahead of the crack 

tip, local fracture strain, fε
* and yield stress, yσ . The correlation [80] is given as 

 0
*

1 lJ fyC εσ=  (2.62) 

The above equation shows the scaling behaviour of the JIC fracture toughness, since the available 

local strain energy is scaled down by the factor l0. Thus selection of scale or ruler for the 

measurement of l0 plays a crucial role for the determination of JIC from the microstructural 

parameters. 

Impact toughness test is performed to determine the tendency of a material to behave in a brittle 

manner. Charpy V-notch specimen type is often used for the impact toughness test. The 

specimen is forced to bend and fractured at a high strain rate of the order of 103 /sec by a heavy 

swinging pendulum. The result obtained by the impact toughness test is the energy absorbed in 

fracturing the specimen. The energy absorbed in fracture is read from the calibrated instrumented 

tester. The toughness measured by the impact toughness test often referred to as the Charpy test 

known as Cv impact toughness, and is usually expressed in joules.  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0

100

200

300

400

500

600

700

800

900

1000

J,
 k

J/
m

2

Δa, mm

ELGJ 0A



 53

2.7 Micro structural image  

To reveal microstructural features in materials, images of the material surfaces are captured 

using optical and electron microscopes. A typical microstructure of metallic materials may 

contain one or some of the following: 

• Grains and grain boundaries 

• Crystallographic orientations 

• Defects in the form of dislocations (line defects), slip bands, porosities, micro cracks 

• Coherent and/or incoherent precipitations 

• Grain boundary precipitations 

• Second phase particles 

Figure 2.26 shows the schematic of microstructural features [84] in metallic materials. Each of 

these features has effect on mechanical as well as fracture properties of materials.  The Hall-

Petch relation [85,86] is the most popular structure-property correlation mentioned in the 

previous chapter. 

Crystallographic orientations refer to the relative orientations of crystallite grains, the collective 

nature of which is often called texture. Grain orientations may manifest as low angle grain 

boundaries (LAGB) and high angle grain boundaries (HAGB). Since strain is caused by smooth 

motion of dislocations (unit of defects), HAGB impedes dislocation motion, for which ductility 

is reduced and strength increases.  

 

Figure 2.26: Microstructural constituents [84] 
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Coherent, incoherent (coarse) and grain boundary precipitations as well as second phase particles 

alter the mechanical as well as morphological properties in metallic materials. Addition of 

alloying elements, heat treatment, cooling rate, etc., control the precipitation mechanisms, 

dispersion of second phase particles and formation of new phases, which create materials with 

new microstructural compositions and properties. 

 

2.7.1 Microstructure phases of steel 

For steel, different morphological structures like austenite, pearlite, bainite, ferrite, cementite 

(iron carbide) and martensite are formed depending upon the cooling rate. These phases occur 

depending upon the temperature and solubility of carbon (in weight percent) in iron. The 

temperature vs solubility of carbon showing various phases are known as iron-carbon phase 

diagram shown in Figure 2.27 up to 1000oC. Morphological characteristics of these phases are 

shown in the figure in five distinct regions (A to E). There are four critical temperatures for pure 

iron: A1 temperature (723oC) when eutectoid reaction occurs, A2 (769oC) temperature when iron 

changes from ferro-to paramagnetic condition, A3 temperature(910oC) when alfa iron transform 

to gamma iron, and A4 temperature (1390oC) at which gamma iron transforms to delta iron. 

Solubility of carbon is higher in austenite than ferrite in a given temperature. Addition of 

alloying elements in steel changes the iron-carbon diagram by altering the critical temperatures 

and phases.  

Austenite (or gamma phase iron) is a metallic non-magnetic solid solution of iron [87]. In plain-

carbon steel, austenite exists above the critical eutectoid temperature of 723°C; other alloys of 

steel have different eutectoid temperatures. The rate of cooling determines the phases that will 

occur in the final microstructure as shown in Figure 2.28. Slow cooling transforms austenite into 

pearlite phase which is the combination of ferrite, cementite and a proeutectoid phase that forms 

(on cooling) before the eutectoid austenite decomposes. Depending upon the carbon content in 

the steel, microstructure will be either ferrite-perlite (A) or perlite-cementite (B).  Moderate 

cooling transforms austenite into bainite phase which is the combination of ferrite and cementite 

and it forms between 250-550oC. Bainite also occurs during athermal treatments at cooling rates 

too fast for pearlite to form, yet not rapid enough to produce martensite. 
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Figure 2.27: Iron-carbon phase diagram up to 1000oC 
(Source: http://www.rmutphysics.com/CHARUD/scibook/crystal-structure/iron%20section.htm) 

The martensite is formed by rapid cooling (quenching) of austenite which traps carbon atoms 

that do not have time to diffuse out of the crystal structure [88]. Thus it forms by a sudden 

diffusionless shear process. This martensitic reaction begins during cooling when the austenite 

reaches the martensite start temperature (Ms) and the parent austenite becomes mechanically 

unstable. At a constant temperature below Ms, a fraction of the parent austenite transforms 

rapidly, then no further transformation will occur. When the temperature is decreased, more of 

the austenite transforms to martensite. Finally, when the martensite finish temperature (Mf) is 

reached, the transformation is complete. In practice, depending upon the alloying element, a 

small proportion of austenite is retained in the matrix which is called retained austenite.  

Reheating of martensite generates tempered martensite which is again shown as a combination of 

ferrite and cemetite phase (Figure 2.29). 

Microstructural phases of steel described above have different mechanical properties. For 

example martensite alone is harder than austenite. Desired mechanical properties can be obtained 

by combining two or more phases which create new morphological structures. The effect of 

these phases on mechanical properties like strength and ductility is shown in Figure 2.30. By 
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selecting appropriate cooling rate, carbon content and alloying elements in iron, steel with 

desired mechanical properties can be obtained.  

 

 

Figure 2.28: Various phases of steel  [89] 

 

 
Figure 2.29: Reheating transform martensite into tempered martensite 

 

 
Figure 2.30: Phases of steel and their effect on mechanical properties 
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2.8 Fractographic images  

For analyzing and assessing various fracture mechanisms, high resolution images of fractured 

surfaces are used. These surfaces may be created after fracturing standard specimens in the 

laboratory, primarily to investigate the fracture mechanisms. The fracture surfaces, obtained as a 

result of catastrophic failure of engineering components, may be used for failure analysis. 

Fracture surface can be viewed in macroscale and microscale. At different length scales, 

different fracture features are revealed which corresponds to various operative fracture 

mechanisms. Depending upon the crack path, fracture mechanism is classified into two broad 

groups:  Transgranular fracture and Intergranular fracture. Cleavage or brittle fracture and ductile 

fracture are types of transgranular fracture, when the crack path breaks through the grains. 

Intergranular fracture takes place due to grain boundary separation.  Figure 2.31 shows SEM 

fractographs of transgranular and intergranular fractured surfaces. While the crack path 

corresponding to the ductile fracture is found to be less tortuous, this is not so for intergrannular 

fracture when grains have HAGB. Effect of crack path tortuosity on the energy required for 

crack initiation and growth is being investigated by fractal analysis of crack path geometry.  

 

Type Cleavage fracture  Ductile fracture Intergrannular fracture 
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Figure 2.31: Morphology of fractographs 
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2.9 Magnetic Barkhausen Emission Signal 

Magnetic Barkhausen Emission (MBE) signals are the time domain burst type signals. This 

emission occurs in a ferromagnetic material when it is subjected to varying magnetizing force. 

This phenomenon is known as Barkhausen effect [90] and the emission is also called Magnetic 

Barkhausen Noise (MBN). To observe Barkhausen effect and to acquire MBN signal, a 

ferromagnetic material, wounded by surface pick-up coil, is magnetized by an electromagnet at a 

certain magnetizing frequency typically in the range of 0.2 Hz to 50Hz. The detected pick-up 

voltage is then amplified and filtered using band pass filter, which is then sent to the data 

acquisition card of a computer for storage and analysis. Typical Barkhausen Emission signals, 

shown in Figure 2.32, are like acoustic signals. These signals are essentially magnetic noise, 

which is produced due to the abrupt jump causing the stepped increments in the B-H curve. The 

burst is maximum at the coercivity point (Hc), when the flux density (B) is zero and the change 

of flux density due to the applied magnetic field is maximum. The width of the burst corresponds 

to the width of the hysteresis loop.  

 

Figure 2.32: Packets of MBE signal 

A typical magnetization curve showing the effect of the magnetic field, H on the magnetzation 

strength M or B, is illustrated in Figure 2.33 along with the acquired MBE signal. The 

magnetization strength is the magnetic dipole moment per unit volume of the specimen which is 

Sinusoidal driving field 

MBN packet 
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the function of magnetic flux density B. The apparently smooth continuous curve looks stepped 

[91] when examined more closely as shown in inset of Figure 2.33(a). The Barkhausen effect 

causes small, discontinuous changes of M or B as H varies.  

During magnetization, a large number of magnetic moments align is one direction in small 

regions called domains. The region between two domains having opposite domain orientations is 

known as domain wall (DW) shown in Figure 2.34. Each DW consists of several hundred atom 

layers where the magnetic orientation is random. When a magnetic field is applied, domains 

favouraly aligned with the field, tend to grow by domain wall motion at the expense of the 

unfavourably aligned domains. The amount of growth or the distance, that a domain wall travels, 

depends on the strength and direction of applied magnetic field, microstructures, composition 

and stress state of the material. 

 

 

 

Figure 2.33 : (a) Magnetic hysteresis loop showing important properties, Remanence (Br), Coercivity 
(Hc), initial permeability (µi) and maximum differential permeability (µmax) (b) Magnetic Barkhausen 
emissions signal for full magnetizing cycle

Figure 2. 34: (a) Schematic representation of magnetic domain in polycrystalline materials like steel (b) 
the movement of the domain wall under applied magnetic field

(a) (b) 
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During magnetization, the movement of domain walls is obstructed or pinned by the presence of 

grain boundaries, second phase particles, and non-metallic inclusions in ferromagnetic materials. 

Presence of these microscopic obstacles keeps the flux density invariant  even when the 

magnetizing force (H) is increased. When the applied H is sufficiently large, which can 

overcome the effect of the obstruction, unpinning of DWs take place and the material gets 

magnetized. This causes the stepped hysteresis loop when seen at a microscopic level. 

Since the characteristics of MBE signals are related to the microstructural features, which control 

the mechanical properties of material, the signal can be used for quantifying internal stress [92-

96] and extent of damage in a material due to the variation in the service conditions, like stress, 

temperature or aggressive environment under which the material is operational. Thus 

characterization of MBE is proven to be a useful non-destructive evaluation tool for magnetic 

materials.  
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3 

FRACTAL ANALYSIS OF MICROSTRUCTURE, 
FRACTURE SURFACE, AND BARKHAUSEN SIGNAL:  

A BRIEF REVIEW  
 

Over the last three decades, applications of fractal mathematics are found in various fields of 

science, engineering, arts, medicines, finance and commerce [1-5].  This chapter highlights 

fractal research carried out in material science with particular emphasis in the areas of 

quantitative metallography, fracture mechanics, and magnetic Barkhausen emission signal 

analysis. 

3.1 Fractal analysis of microstructures 

Fractal analysis of microstructure is an advanced quantitative metallographic technique which 

may be needed when the standard practice is found inadequate to describe microstructures by 

standard parameters like particle diameter and spacing. The Metals Handbook Desk Edition [6] 

defines metallography as "The science dealing with the constitution and structure of metals and 
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alloys as revealed by the unaided eye or by such tools as low-powered magnification, optical 

microscopy, electron microscopy and diffraction or x-ray techniques."  

While extensive research for characterizing fracture surfaces by fractal dimensions has been 

carried out in the last three decades, very little effort has been made to quantify micostructures of 

metallic surface by fractal dimensions. The reason may be that the preparation of metallic 

samples for viewing microstructural features is more an art than science. Since quality of 

microstructure depends upon the skill of the expert metallographers, finding out a reproducible 

quantifier for microstructure is a challenging task. Nevertheless research have been carried out 

for quantifying soil microstructures by fractal dimensions [7,8],  characterizing textures in 

fabrics [9], tissue characterization [10], bone mass quantification and texture 

characterization[10,11], etc. The input data for the fractal analysis was clinical CT, X-ray 

radiography, optical microscopic and SEM images. In quantitative metallography, limited 

literature on fractal dimension for characterization of microstructure of metallic materials has 

been found. A review of these is presented here. 

Spatial self-similarity, a subset of self-affine property, and scaling behavior are observed in 

microstructures of multiphase steel, and shape memory alloys [12-13]. Distribution of various 

phases and their morphological characteristics are responsible for the scaling and self-similar or 

fractals [14] like behaviour in microstructures. For example, the scaling properties of the 

distribution of martensite [15-16] indicate the macroscopic change in the material characteristics. 

Similarly an individual bainite sheaf in the microstructure of bainitic steel shows scaling 

properties since the topology of the interfaces is not smooth [14, 17]. Fractal nature of acicular 

ferrite, a highly sub-structured non-equiaxed ferrite, is evident for a range of more than one order 

of magnitude [18].  

Figure 3.1 shows the fractal growth of martensite in steel which is similar to the fractal 

generation of Sierpinski triangles shown in Figure 3.2. It demonstrates that transformation from 

austenite to martensite starts at the austenite grain boundaries. The transformation begins at the 

martensite start temperature (Ms) and is completed at the martensite finish temperature (Mf). 

Distinguishable fractal pattern can be found in the third generation of the transformation, this 

would continue till the transformation is complete. During this period the fractal dimension will 

remain constant. 
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Figure 3.1: Fractal growth of martensite  in steel [21] 

Likhachev et al. [12] analysed optical images of microstructure of Cu-Al-Ni single crystal alloys 

and demonstrated that martensitic domain distribution in the image has two different scaling or 

frequency regions with a cross over point. The small spatial length scale (high frequency) region 

corresponds to the distribution of the self accommodating groups of plates and the large scale 

corresponds to the thickness distribution of martensitic crystals. Su et al [13] analysed optical 

images of the microstructures of ferrite-martensite steels by progressively aging the materials 

and obtained a positive correlation with the grain size. It was concluded by the authors that 

ferrite is fractal in nature.  

 

Figure 3.2: Fractal generation of Sierpinski-triangle 

In the review paper, Hornbogen [15] stressed that for representing microstructures by fractal 

dimensions, self similarity or self-affinity has to be established. It was highlighted that formation 

of martensitic microstructure undergoes fractal growth of different martensitic morphologies. For 

characterizing martensitic microstructure, it was pointed out that two fractal dimensions can be 

obtained. The dimension in between 1.7>D>1.3 characterizes true microstructure. However the 

second fractal dimension D<1 represent the length of the martensite crystals and the spacing of 

the islands of residual austenite. Colas [16] analyzed microstructure of different grain sizes for 

the AISI type 316L austenitic stainless steel and estimated fractal dimensions using box counting 

method. The fractal dimension was found to be varying inversely with the grain size. Similar 

correlation between fractal dimension and pearlite size was reported by Su et al [17] for HSLA 

1 
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steel. The fractal dimensional increment D* range was found to be 0.48-0.58. Using a different 

method, the same author obtained the range for D* as 0.09-0.13; however the same positive 

correlation was obtained between the fractal dimension and pearlite size. For bainitic steel, it was 

reported by Kang and Bhadeshia [18, 19] that bainite sheaf, shown in Figure 3.3,  has a fractal 

character with fractal dimensional increment 0.59. 

 

Figure 3.3: (a) Tracing diagram of a bainite sheaf  (b) Regenerated a larger sheaf using (a) as unit 

(reproduced from ref[19]) 

Villegas et al investigated [20] fractal characteristics of acicular ferrite phase in medium carbon 

micro-alloyed forging steels. At different cooling rates, SEM images of microstructure were 

analysed and fractal dimensional increment D* was obtained between 0.11 and 0.41. Skrotzki 

[21] characterized a martensitic microstructure of a Fe-Ni alloy by fractal analysis. The author 

used Sierpinski-triangle (Figure 3.2) to describe the stepwise transformation from austenite to 

martensite phase. Rybaczuk [22] proposed an approach employing fractal geometry to describe 

martensite phase in austenitic steel. 

 

3.2 Fractal analysis of fracture surfaces 

Fracture surfaces of metallic materials are rough. The extent of roughness depends upon the 

amount of surface energy used for creating the surface, and the availability of surface energy 

subsequently depends upon the mechanical properties of the materials. There can be dynamic 

variations of material properties due to various loading conditions and environment. Progressive 

changes in the materials thus affect the fracture mechanisms for which the fracture surface will 
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have morphological variations in terms of roughness and waviness. Since fractal dimension 

quantifies surface roughness, the dimension will vary with the loading history, environment and 

material being investigated. It has already been discussed in chapter 2 that fractal dimensions 

depend upon the methods by which the dimensional estimates are made. Different methods give 

different fractal dimensions for the same surface. With regard to the analysis of fracture surfaces, 

the most popular method was the slit island method (SIM) considering area-perimeter 

correlation. In fact SIM is the way to capture the surface elevation by progressively eliminating 

the surface coated with nickel or chromium for revealing new structural features. Table 3.1 

summarizes the research carried out for evaluating fractal dimensions from fracture surfaces, the 

fractal analysis methods, materials used and the range obtained.  

Mandelbrot, Passoja and Paullay [23] analysed fracture surfaces of tempered 300-grade 

Maraging steel by SIM and estimated fractal dimensions to be between 1.1 and 1.3.  An inverse 

correlation between the fractal dimension and the impact energy was obtained. Later Pande and 

Richards [25] estimated fractal dimensions of tensile fracture surfaces of titanium 6211 tensile 

test specimen by three methods: vertical sectioning (VS), secondary electron line scanning (SEL) 

and slit island and got the values 1.126, 1.171 and 1.32  respectively. In VS method, fractured 

surface was mounted in carbon bakelite, the mount was cut vertically to produce two 

complementary fracture surface cross sections. These cross sections were mechanically polished 

and observed by the SEM to capture high resolution images of the profile. This profile of the 

vertical cross-section of the fracture surface was used for computation of fractal dimension. In 

the second method (SEL), secondary electron signal was directly used for computing fractal 

dimensions. Huang [30] obtained the value of D of the impact fractured surfaces for CK45 steel 

at different heat treatment temperatures by the SEL scanning analysis and the VS method. They 

reported that the D by the SEL scanning analysis is greater than the same by the VS method. 

However, D by both the methods show similar trend which was found to be directly proportional 

to the impact toughness.  

For computing fractal dimension of fracture surface, the logarithmic correlation between scale 

and measured quantity, referred as fractal plot here, needs to be used. For natural surface this 

correlation can be presented by reversed sigmoidal (RS) curve since the correlation between 

scale and measured quantity is negative. Since the RS curve has different slope at different 

length scale, a unique fractal dimension can not quantify the surface correctly.  Multifractal 

concept was required for representing the full RS curve as reported by Williford [29]. While the 
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length scale of 10-5m corresponds to the fracture process, 10-15m, 10-20m and 10-23m correspond 

to the grain boundary cavitations, dislocations and bond breaking processes respectively. 

Fracture surface roughness shows similar RS behaviour (roughness is positive in the secondary 

Y-axis) as shown in Figure 3.4. It can be seen in the same plot that fracture energy is directly 

proportional to the scale of measurement whereas surface roughness is inversely correlated. 

 

Figure 3.4: Multiscaling behaviour of fracture energy and surface roughness plotted against scale of 

observation [13]. 

Underwood and Banerji [24] reported the same RS nature of the fractal plot and suggested an 

alternative procedure for linearizing the plot. The alternative fractal dimensions from the profile 

and surface obtained from the fracture surface of AISI 4340 steel show minima at 500oC which 

correlate the embrittlement phenomenon at this temperature associated with this steel.  

Huang [30] recommended that the true fractal dimension can only be obtained if the area of the 

fracture surface could be measured with area scale directly. In a later paper by Huang et al [34], 

slit island method was used where it was shown that the variation with the toughness depends 

upon the object being measured. When the object “lake” was measured within “island”, fractal 

dimension decreases whereas for measuring “island” within “lake”, the value increases. 

Krupin Yu. A. [33] investigated the statistical properties of the fractal dimensions estimated by 

the SIM and the VS methods. The fracture surfaces were generated by stress corrosion cracking 

in low-alloy steel. It was observed that the values of fractal dimension obtained by two methods 
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for the same specimen are different and not correlated. Krupin Yu. A. further investigated the 

correctness of the fractal dimensions by confluent analysis and obtained them within the range of 

2.668 to 2.957 for the same type of corrosion fracture surfaces of low alloy high strength steel. 

They have reported the lowest value 2.65 for cleavage, intermediate value of 2.7-2.75 for 

intergranuular, 2.8-2.85 for ductile and 2.6-2.9 for mixed fracture surfaces. 

Su, Zhang and Yan [36] carried out fractal analysis of microstructures and reported direct 

correlations between fractal dimension, Dm estimated from the microstructure of ferrite-

martensite steel and the grain size (R). They have used SIM and carried out image analysis to 

compute fractal dimensions using area-perimeter correlation. The fractal dimension, Df from the 

fracture surface and its correlation with the logarithmic values of the impact toughness (Kd) was 

reported by the authors. It was found that the value of Df increases as the impact toughness 

decreases exponentially, contrary to the findings of Mandelbrot et al [23]. The correlations of Dm 

and Df as reported by Su et al are of the following forms 

 12.136.1 −= RDm  (3.1) 

 87.267.0)log( +−= fd DK  (3.2) 

Hsiung and Chou [41] characterised the fracture surface of an HSLA steel by SIM and computed 

Df  by area-perimeter correlation. They had used three ruler lengths or magnifications and found 

out that the correlation between Df and the impact energy (Kd) varied with the ruler lengths. For 

larger ruler length at low magnification the correlation is inversely proportional whereas it is 

direct when the magnification is higher.  They have proposed a correlation based on fractal 

dimension increment D*(fractional part of Df)  as 

 *
025 DKK dd =  (3.3) 

In the above equation Kd0 is the impact toughness determined experimentally. 

Annamaria Celli [49] analyzed the crack paths generated by Vickers indentation in composite 

materials by fractal geometry and reported the correlation between the fractal dimension D of the 

geometric pattern of the crack path and the roughness. The crack profile was captured by SEM at 

high magnification and the images of the crack paths were analyzed to estimate fractal 

dimension. This correlation indicates the extent of anisotropy of the microstructure due to the 

presence of clusters of whiskers in the composites.  
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A correlation between fracture toughness (Kc) and fracture surface energy ( cγ ) and the fractal 

dimension for brittle material like ceramic was reported [40] as 

 5.0*5.0
0 . DaEKKc +=  (3.4) 

 E
Da

c 2
*0

0 += γγ  (3.5) 

where E is the elastic modulus, a0 is the characteristic length (the minimum length scale used for 

measuring an object) involved in the fracture process i.e. the value of the order of the atomic 

radii,  and D* is the fractional part of the fractal parameter. K0 and γ0 are the fracture toughness 

and fracture surface energy respectively for a flat fracture surface which is found to be zero for 

ceramic. 

The correlation between fractal dimension and the theoretical strength, tσ , has been presented 

by Mecholsky  [50] by considering the stress distribution  at a point ( )θ,r  near the crack tip 

during fracture as 

 ( )
)(

2 5.0, θ
π

σ θ f
r

K c
r =  (3.6) 

Combining equations (3.4) and (3.6) and considering f(θ)=1, r=a and K0=0, the theoretical 

strength of brittle material is obtained as 

 ( ) 5.0

5.0*

2π
σ ED

t =  (3.7) 

The theoretical strength computed by the above equation was found to be between E/8 and E/π 

when fractal dimensional values collected from the literatures were used. The theoretical strength 

values are found to be acceptable particularly for brittle materials. The author concluded that  

theoretical strength of materials can be estimated based on the geometry of the crack tip and the 

generated fracture surface. 

The main emphasis of fractal quantification was to obtain a correlation between the fractal 

dimension, D, and the fracture toughness of the material. In many cases fractal has been 

considered as the roughness property which eventually correlates the toughness of the materials. 

For a fracture surface such as those observed in single crystal or in glass, the driving force for 

crack initiation, GIC , can be represented by  
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E
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where γ0 is the surface energy per unit area, expressing only the thermodynamic surface energy 

i.e the energy necessary to break chemical bonds. In equation (3.8) η is the Poission’s ratio and 

KIC is the plane strain fracture toughness of the material. At room temperature, even a ceramic 

material exhibit some micro-plasticity near the crack tip, which causes stress release. Taking into 

account this extra energy for plastic deformation, γp, the total energy for fracture 

becomes ( )pγγ +0 . Increasing fracture energy creates more surface area and the surface 

roughness enhances. This can be accounted for by incorporating fractal dimension in the model 

represented by equation (3.8).  Previous investigators [51, 52] have presented such model where 

the area increment due to tortuosity (or roughness) has been incorporated in the surface energy. 

Therefore, effectively the crack propagation initiates when 

 ( ) ( )
E

K
kG ICD

pc

22
1

01
)1(

..2
η

γγ
−

≥+= −  (3.9) 

where k is related to the scale of measurement and the characteristic length of the material. 

Rodrigues & Pandolfelli [51] proposed fractal theory for ceramic materials in which the crack 

deflection was suggested as the geometric toughening mechanism. The total energy of fracture 

and the average value of the crack propagation resistance were correlated with the fractal 

dimension. Presenting the correlation between roughness of the fracture surface and the fractal 

dimension, it was pointed out that the average difficulty for crack propagation calculated from 

the J-R curve within an interval of certain crack extension could be expressed as a function of 

fractal dimension when a purely geometric toughening mechanism took place. In concrete, a 

direct correlation between the fracture toughness and fractal dimension was observed by Issa et 

al [53]. They recommended a simple linear relation between fractal and fracture energy for 

concrete. 

Charkaluk et al [4] reviewed various methods for the determination of fractal dimension and its 

correlations with the mechanical properties. It was found, as discussed earlier, that different 

methods generate different D values for the same fracture surface. In some work a positive 

correlation between D and the K1C fracture toughness was reported for materials like cement 

[54], Ocala chert [55], Alumina and glass ceramics [56] and AlN ceramic [57]. A negative 

correlation was observed in case of 24SiMnCrNi2A and 30CrMnSiNi2A [28], concrete [58] and 

dental porcelains [59]. No correlation [60] was obtained for concrete. The authors concluded that 

the difference between fractal dimensions computed by different methods is greater than the 
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variations with the material properties. The algorithms were not found to be precise in many 

cases.  Malcai et al [61] carried out statistical analysis of values of D in order to find out the 

scaling range and cutoffs in computing the slope of the reverse sigmoidal curve. They 

summarised that for self-similar fractals, width of the scaling range is within 2 decades (102). It 

was recommended that for computing the fractal dimension, the sensitivity of the scaling range 

with the experimental variables required to be assessed.  

Fractal behaviour of brittle materials has been studied extensively where correlations between 

fracture toughness, denoted by KC or K1C, and fractal dimensions had been presented. In the case 

of ductile fracture, void initiation, coalescence and growth determine the fracture toughness, J1C, 

by arresting or decelerating crack propagation rate. The energy dissipation (ED) rate is related to 

the amount of plastic energy that is necessary to propagate a crack. Three mechanisms that 

contribute to ‘ED’ during crack propagation are the lateral necking, deformation within the 

plastic zone and formation of voids in the process zone in case of tensile fracture. The energy 

required for the formation of void is responsible for the fracture surface formation and the 

morphology that is created on the fracture surface. Since the fractal dimension, D, correlates the 

surface irregularities caused primarily due to this void energy the correlation between D and J1C 

may be found when the number of voids is large i.e. the void energy is maximum. 

Thomson and Ashby [62] found a relation between JIC and the fractal dimension of the surface: 
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where σy is the tensile strength of the material, fp is the volume fraction of voids and l0* is the 

characteristic length. A direct correlation between the fractal dimension and JIC is observed 

according to the above equation.  

The analytical relationship between roughness parameter and fractal dimension has been 

obtained for different types of materials by previous investigators [24, 63]. Roughness can be 

measured for profiles as well as surfaces in terms of profile roughness parameter (RL) and 

surface roughness parameter (RS). The RL is defined as the real length (LR) divided by the 

projected length (LP) of the profile. Whereas, RS is defined as real area (AR) of the fracture 

surface divided by the projected area of fracture (AP). The equations for the profile and surface 

roughness can be written as: 
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where C1 and C2 are the constants. The measurement scale k defines that, as the value of k 

decreases, the roughness increases since D* (fractional part of D) is always negative. It is 

relatively difficult to find RS experimentally. A simple linear parametric equation proposed by 

Underwood [63], which fits a large amount of experimental data, is given as 

 ( ) 114
+−= LS RR

π
 (3.13) 

Using the profile and surface roughness data in equation (3.11), (3.12) and (3.13) fractal 

dimension can be computed. It was reported that roughness and fractal dimension has strong 

dependence on magnification [64]. Too small or too large magnification will generate 

insufficient roughness information which would not be correct representation of fracture surface 

morphology. 

 

3.3 Fractal analysis of magnetic Barkhausen emission signals 

MBE signal is a non-stationary time domain signal which is generated due to the change of 

domain wall (DW) velocity. Fractal characteristics of Barkhausen effect due to the unpinning of 

the DW or Barkhausen Jumps (BJ), was investigated by several authors [65-68]. Durin et al [65] 

highlighted that MBE signal exhibit self-similarity properties at sufficiently low domain wall 

velocity. They estimated fractal dimension, Dc based on random Cantor dust and had shown 

Dc=1-c, where c is the average normalised DW velocity less than 1. Here c is proportional to the 

applied field rate, given in equation (3.14), and is correlated with two exponents γ and β to 

express the duration (T) and size distribution (s) of the DW respectively.   

The average DW velocity is given as: 
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In equation (3.14), σ is the electrical conductivity, G is a constant 0.1357, S is the cross sectional 

area, μ is the permeability, φ is the induced flux per coil turn, A is the parameter measuring the 

strength of the local pinning interactions, aH& is the applied magnetic field. 

Zapperi & Durin [70] highlighted the power law variation of the signal amplitude distribution 

considering velocity (v), size (s) and time duration (T) of the DW as 
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where the exponents of the above equations are estimated from c and the correlations are given 

as 

 
2

3
2

c
c

−
=

−=

β

γ
 (3.16) 

The P(v) distribution reflects the characteristics of BJs at different rate of applied magnetic field, 

ah& . When c>1, the DW motion is continuous; when c<1, the BJs are separated in time and 

widely distributed in duration and size. The P(s) distribution is expressed as a function of the 

average area under a typical BJ, termed as avalanche size s. To express the temporal distribution, 

P(T), a power law correlation with T is also used, where T is the time duration for each BJ event. 

Equation (3.15) is the stationary amplitude distribution from the MBE signals which was 

obtained by solving Fokker-Plank equation given as 
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In equation (3.17), v is the normalized DW velocity, u is the normalized time duration, and hp is 

the normalized local DW pinning field (Hp). Zapperi et al [70] highlighted various approaches 

for the prediction of Backhouse noise (BN) pulses and discussed their advantages and limitations 

in interpreting the experimental results. The models are primarily focused on explaining the 

statistical properties of the Barkhausen effect. It was highlighted that the properties of power 
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spectrum for experimental results need to be explained in the light of the physical phenomenon 

observed in DW motion. 

Elementary signals of Barkhausen noise of the commercial VITROVAC 6025 X metal glass 

sample, were extracted by Spasojevic et al [71]. They have computed power law exponents from 

an elaborate formula for the power law spectrum. The formulation included probability 

distribution function, a correlation factor determining the signal duration and the power law 

spectrum of the elementary signal. The role of BN elementary signal, power laws, scaling 

relations to understand the criticality of BN was highlighted there.  

Tidac [72] explored the scaling behaviour of BN and found it to be non-universal. When the 

degree of disorder is varied through non-equilibrium phase transition, the scaling exponent also 

varies. They reviewed experimental and theoretical investigation of the BN, in which the power 

spectrum was shown to decay with frequency as ~ φ−f , where 1.5<φ<2 and the distribution of 

size, duration and energy associated with BJ exhibit a power law behaviour over a few decade 

with a cutoff. 

The characteristics of BN signals and their power spectrums elucidated by previous researchers 

were classified into three groups by Plewka et al [73]. These are 

• Noise in BN treated as a stochastic element [73] can be modeled using desired parameters to 

get a known shape of the power spectra 

• The evidence of 1/f power spectrum signifies self-organised criticality [74] in which BN was 

considered as a collective phenomenon of several degrees of freedom. An avalanche like 

propagation of domain wall takes place for a small perturbation due to a single BJ. The effect 

of BJ may decay gradually generating a point of self organized criticality in spatial as well as 

time domains. 

• Chaos in the BN pulses can be treated as deterministic rather than stochastic [75-77]. A 

single domain may show random disorder, however the presence of long range magnetostatic 

interactions orchestrated the random disorder in synchronized deterministic forms.  

Using correlation dimension, a method to represent self-similar fractal behaviour in signals, 

Plewka et al [73] demonstrated that Barkhausen effect exhibits low dimensionality and, therefore 

can be treated as a deterministic chaotic phenomenon. 
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Table 3.1: Fractal analysis of fracture surface* 
Ref 
No 

Reference Year Methods Materials Range for 
D* 

Remarks 

23. Mandelbrot B. B. et al  1984 SIM/PSD 300-grade Maraging 
steel  

0.1-0.27 Impact energy is inversely proportional to the D*. 

24. Underwood EE,  
Banerji K. 
 

1986 VSM+R AISI 4340 0.072-0.091 Fractal dimension plot for different tempering temperatures 
show a minima at 500oC indicating embrittlement. 

25. Pande CS et al 1987 VSM 
SEL 
SIM 

Ti Alloy 6211 0.087-0.126 
0.171 
0.32 

Tensile fracture surfaces were used for estimating fractal 
dimension. 

26. Pande CS et al 1987 SIM 
VSM 

TA6V2XZr 0.41-0.46 
0.03-0.11 

No correlation was found between material properties and 
D*. 

27. Richards LE, Dempsey 
BD. 

1988 SIM Ti Alloy 0.78-0.91 No correlation was found between material properties and 
D*. 

28. Mu ZK, Lung CW 1988 SIM 24SiMnCrN2A 
30CrMnSiNi2A 

0.12-0.22 
0.11-0.18 

K1c fracture surface is inversely proportional with D*. 

29. Williford R. E. 1988 - Brittle(ZnSe, Al2O3) 
Ductile(Maraging 
steel, Ti alloys) 

0.1-0.3 
0.3-0.1 

For brittle fracture, D* has direct correlation with the surface 
energy. Inverse correlation is true for ductile materials. 

30. Huang Z. H. et al 1989 VSM 
SE 

CK45 0.12-0.16 
0.2-0.3 

D* and impact toughness increase with increasing 
temperature. 

31. Davidson DL. F 1989 R Al-SiC 0.084-0.248 No correlation between D* and Material properties reported. 
32. Bouchaud E et al 1990 Corr Func Al alloy 0.18-0.25 D* remains constant 
33. Krupin YA, Kiselev I K 1990 SIM/VSM 4340 steel 0.063-0.753 Correlation not defined 
34. Huang Z H. et al 

 
1990 SIM (island) 

SIM(lake) 
CK45 0.32-0.4 

0.22-0.3 
Inverse correlation with impact toughness for lake-in-island. 
Direct correlation for island-in-lake. 

35. Dauskart et al.  1990  Mn steel  0.28 Intergranular failure 
36. Su H et al 

 
1991 SIM Dual Phase 

Dual Phase 
0.2-0.8 
0.09-0.22 

Inverse correlation obtained between Impact toughness and 
D*.Direct correlation obtained between D* and fatigue 
threshold. 

37. Long QYet al 1992 VSM+R 30CrMnSiNi2 0.08-0.12 Direct correlation with toughness. 
38. Ray K K and Mandal G 1992 SIM/P HSLA 0.01-0.53 Direct correlation with impact toughness. 
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Ref 
No 

Reference Year Methods Materials Range for 
D* 

Remarks 

39. Jiang XG et al. 1993 VSM 7475 Al alloy 0.143-0.362 No correlation defined 
40. Hilders and A., Pilot D. 1997 SIM A commercial 

medium- 
carbon ferrite-pearlite 
steel. 

0.05-0.8 Positive correlation between D* and impact toughness. 

41. Hsiung J.C. & Caou Y. 
T. 

1998 SIM  HSLA from Temp. of 
-20 to -145oC 

0.02-0.2 Positive correlation between D* and impact toughness. 

42. Kurt Wiencek et al 2001 VSM A high carbon steel 0.09-0.1 No correlation. Independent of the impact toughness. 
43. Maria Sozanska et al 2001 P Carbon steels 0.08-0.11 Surface roughness  as well as D* is strictly correlated with an 

increase in hydrogen embrittlement. 
 

44. Sebastian Stach et al 2001 PCM & BC Ductile 
(SW7M+0.057N 
steel)  Brittle 
(10H2M steel) 

0.08/0.15 
(ductile) 
0.01/0.02 
(Brittle) 

D* for ductile fracture surface is more than the same for 
brittle fracture surface. 

45. A.L. Horovistiz and 
Hein 

2004 MB Aluminium alloy 0.03-0.11 D* measures local morphological entropy. D* depends upon 
the local microstructure as well as the state of stress fields. 

46. O. A. Hilders et al 2004 SIM Aluminum alloys 0.08 – 0.25 Phase I: D* is inversely proportional to fracture strain. 
Phase II: D* is constant 
Phase III: D* is directly proportional to fracture strain. 

47. Katarzyna Klyk-Spyra 
and  Maria Sozań ska 

2006 P Duplex stainless steel 
2205 

0.13-0.25 External loading affect the roughness of the fracture surfaces. 
A direct correlation between D* and external loading was 
observed. Fracture mechanism changes from brittle to ductile 
as the load increases. 

48. I. Dlouhy and B. 
Strnadel  

2008 P Ni–Cr steel 0.06-0.18 D* for intergranular fracture>0.12 else transgrannular 
fracture  

P: Profilometry; VSM: Vertical sectioning method; SEL: Secondary electron line scanning; PCM: Projected covering method; SIM: Slit Island 
Method; R: Richardson Plot; Corr. Func: Correlation function; BC: Box counting; MB: Modified box counting; R/S: Rescaled range analysis; 
PSD: Power spectral density method; Wave: Wavelet analysis 
*(23-35: from ref [4]) 
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4 

FRACTAL ANALYSIS OF 

SYNTHETIC SIGNALS AND IMAGES 

 

This chapter introduces the initial steps for carrying out fractal analysis of images and signals. 

Fractal analysis requires selection of appropriate algorithms for computing fractal dimension and 

their implementation for generating accurate results. Review of various algorithms for fractal 

analysis of images and signals has been discussed in chapter 2. In this work, three algorithms 

selected for implementation are: Rescaled Range analysis, known as R/S analysis, Power 

Spectral Density (PSD) and Wavelet analyses.  As an initial step, prior to carrying out fractal 

analysis of real signals (here signals mean both 1D signal and 2D image), fractal quantification 

needs to be done for synthetically generated signals with known fractal dimensions. When the 

input dimensions match with the estimated dimensions for the synthetic signals, the codes are 

validated. It may be noted that exact agreement i.e. zero error may not be possible if the synthetic 

signals are generated using random functions. However an empirical correlation within a wide 



 90

data range would make the fractal estimator a useful technique for quantification of images as 

well as any one dimensional signals.  

For generation of synthetic signals, various methods like Random Midpoint Displacement 

(RMD) algorithm [1,2], Fourier Filtering (FF) algorithm [1,2], etc are available. In addition 

functional formulation like Weierstrass Cosine Function (WCF) [3,4] is avaiable for simulating 

1D signals. The simulated synthetic images and signals presented in this chapter are of fractional 

Brownian motion (fBm) and fractional Gaussian noise (fGn) [3,4] type, which are generated 

synthetically by FF algorithm and using WCF. 

Implementation of methodologies and algorithms are presented in this chapter along with the 

results for validation of the fractal codes. Extensive error analysis has been performed to assess 

the quality of results.  

 

4.1 Generation of synthetic signals and images 

Mathematical formulations for generating synthetic signals and images based on fBm anf fGn 

functions are given in this section. While the 1D synthetic signals are based upon Weierstrass 

cosine function (WCF), synthetic images are based upon fBm and fGn types. For simulating the 

synthetic images, only Fourier Filtering method based on stochastic random variables has been 

implemented since this method (FF) is compatible with other methods as reported [5]. 

 4.1.1 Weierstrass cosine function (1D) 

This function is continuous everywhere however differentiable nowhere. The typical WCF [6] is 

given as 

 ( )∑
∝

=

=
0

cos)(
i

nn xbaxf π  (4.1) 

where 0<a<1, and ab>1+1.5π  and b is a positive odd integer. Weierstrass function shows the 

typical fractal nature where the self similarity is observed at all measurable resolutions. 

Mathematically continuous functions, f(x) can be defined as 

 )()( limlim xfxf xx −→+→ = εε  (4.2) 

where ε   is the infinitesimally small value and the non-differentiality is expressed as 
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)()()()( limlim  (4.3) 

For algorithmic implementation of Equation (4.1) for a given value of the Hurst exponent, H, the 

WCF can be rewritten as 

 ( )∑
=

−=
M

i

iiH
H xYYxf

0
2cos)( π  (4.4) 

where H=2-D and D is the fractal dimension. To generate temporal signals, the input variable, x, 

needs to be converted to the sampled time by multiplying it with (1/fs), where fs is the sampling 

frequency. Figures 4.1(a-d) show the curves generated by the Weierstrass cosine function for 

M=25, Y=5 and H=0.9,0.5,0.3 and 0.1 respectively. 

 

4.1.2 Fractional Brownian Motion (fBm) 

As one of the representations of the statistical self-similarity or statistical fractals, this function is 

known as fractional Brownian motion (fBm). The 1D fBm function is a continuous-time 

Gaussian process bounded between [0,T] where ℜ∈T , where ℜ  is the set of real numbers. The 

function typically has zero mean which can be determined by its covariance or auto correlation 

function. For this zero mean time varying Gaussian process ℜ∈tH tB )}({ , the covariance function 

is written as 

 ( ) ( )HHH
HH ststtBsBCov 222

2

2
)(),( −−+=

σ  (4.5) 

where σ2 is the variance of BH(t) function. The standard fBm refers to the condition when σ2=1.  

The extent of complexity in BH(t) is given by the H exponent. Similar to Weierstrass function, 

fBm is a continuous function but not the differentiable iterative function system (IFS).  

The increment of fBm is given as 

 H
HH tcttBtB 22)()( Δ=Δ+− σ   (4.6) 

where c is a constant. The curve represented by BH(t) becomes smoother as H increases. When 

0<H<0.5, the increments of fBm have opposite signs and their covariance becomes negative, 

hence the function is anti persistent. For 0.5<H<1, positive covariance is obtained, so the 

function becomes persistent. For H=0.5, the function shows complete random behaviour. 
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Figure 4.1: Weierstrass cosine function with a)H=0.9 and b) H=0.5 
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Figure 4.1: Weierstrass cosine function with c)H=0.3 and d) H=0.1 
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The two dimensional implementation of fBm function ℜ∈yxH yxB ,)},({ [2,4] has the similar 

proportionality given as 

 
H

HH yxcyyxxByxB
2

222),(),( Δ+Δ=Δ+Δ+− σ  (4.7) 

The power spectral density (PSD) [ ]ππ ,)}({ −∈ffP  of the fBm surface is given as 

 ( ) 22

1
+∝ Hf

fP  (4.8) 

where 22 vuf += and u and v are the frequency components in two dimensions. 

There are different algorithms for generating fBm surface represented by equation (4.7).  Fourier 

Filtering (FF) method uses a uniform random variable [ ]1,0()∈rand  to generate a complex 

function X(u,v) in the Fourier domain as 

 

( )

( )
⎪
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⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎟
⎠
⎞

⎜
⎝
⎛=

+
=

−=

=

−

+

.tan

().1
1

.,

1

2
1

22

u
v

rand
vu

r

j
where

ervuX

H

j

θ

θ

 (4.9) 

The PSD, P(f) is given as 

 ( ) ( )
2

2,
N

vuX
fP ∝  (4.10) 

where N2 is the total number of data points in a NN ×  image.. 

The properties of fBm are 

• ),( yxBH  is non-stationary 

• ),( yxBH is a Gaussian process 

• ),( yxBH has stationary increments 

• ( ) 0),( =yxBH , where  is the symbol for the expectant or mean 

• ( ) 122 == σHB  is called standard fBm function 

• ( ) ( )tBaatB H≅  is the scaling property for a>0 
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• Power Spectral density 

( )
TDHf

fP +∝ 2

1  where DT the topological dimension=1 for 1D signal and DT =2 

for 2D images 

• Its covariance or auto correlation function is 

 ( ) ( )HHH
HH ststtBsBCov 222

2

2
)(),( −−+=

σ  (4.11) 

Figures 4.2 (a) and (b) show the fBm surfaces generated by using equations (4.7), (4.9) and 

(4.10) for H=0.9 and H=0.1 respectively. Initially a random number is generated and substituted 

in equation (4.9) for a point (u,v) in frequency domain to compute r, θ  and X(u,v). Inverse 

Fourier transform of X(u,v) is the desired fBm surface BH(x,y).  

 

4.1.3 Fractional Gaussian noise (fGn) (2D) 

The increment of the fBm is the  fGn process [3,4], ℜ∈tH tV )}({  is given as 

 { })()(lim)(
0,

ttBtBtV HHyxH Δ+−=
→ΔΔ

 (4.12) 

The properties of fGn are 

• )(tVH  is stationary 

• ( ) 0)( =tVH  

• ( ) ( )222 )1(VVH == σ  

• Power Spectral density 

( )
TDHV f

fP −∝ 2

1  where DT =1 for 1D signal and DT =2 for 2D images 

• Its covariance or auto correlation function is 

 ( ) ( ) ( )HHHH
HH ttttttVtVCov 22

2
222

2

2
121

2
)(),( Δ=−Δ+Δ−+Δ=Δ+ δσσ  (4.13) 

where δ2 is the second difference operator. The H exponent measures the degree of self-

similarity of the fGn type signal. When H=0.5, fGn is the Gaussian noise with 

( ) 0)(),( 5.05.0 =tVsVCov  for 1>Δt . By differentiation of synthetically generated fBm surface 

BH(x,y), fGn surface is generated which is shown in Figure 4.3 (a) and (b) for H=0.9 and H=0.1 

respectively. 
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Figure 4.2: fBm images with 3D surfaces for a)H=0.9 and b) H=0.1 
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Figure 4.3: fGn images with 3D surfaces for c)H=0.9 and d) H=0.1 
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4.2 Results & discussion  

For computing fractal dimensions from 1D signals and 2D images, three algorithms: R/S, PSD 

and Wavelet analyses have been implemented using MATLAB software package. The methods 

are presented in chapter 2 and detailed algorithms are given in Appendix-II. The fractal 

dimensions computed from the synthetic signals and images are verified with the same used for 

generating them. 

For verifying the fractal analysis codes, synthetic 1D signals are generated by the WCF and 

synthetic images by the fBm algorithm. The H exponents computed by three methods are Hr for 

R/S method, Hp for PSD method and Hw for Wavelet method. To compute the H exponent, 

logarithmic correlations showing variations of the measured quantity with scale, known as 

Richardson plot or fractal plot, are presented in Table 4.1.  

 

Table 4.1: Correlations and the Richardson plots by R/S, PSD and Wavelet analyses 

Method Correlations Richardson plot Hurst exponent 

R/S 
rHCk

kS
kR

=
)(
)(  ( ) ( ) ( )kHCk

S
R

r logloglog +=  Hr 

PSD  
pf

fP β

1)( ∝  
( ) ( )fAfP p log)log()(log β−=

2
Tp

p

D
H

−
=
β

 

Wavelet 
wj

jE β
1)( ∝  

( ) ( )jBjE w log)log()(log β−=  
2

Tw
w

D
H

−
=
β

 

 

For natural images with fractal behaviour, the Richardson plot may not always remain linear. 

Nonlinearity in Richarson plot gives multi-fractal behaviour in fractal images or signals. Multi-

linear behaviour, the ranges within which the multi-linearity prevails, and the corresponding 

slopes signify various physical phenomena responsible for the morphological or feature specific 

characteristic of the image. To obtain a uni-fractal quantification, standard practice is to omit few 

outliers particularly the initial and final data points (corresponding to too fine and too coarse 

scales) for fitting the straight line.  
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The robustness and applicability of the particular algorithm are ascertained by computing the 

percentage error which is the percentage difference between estimated H values and input H 

values used for generating the signal. The expression for the percentage error is given as 

 ( )
Input

InputEstimatedError −
=

*100%  (4.14) 

For the synthetic fBm images, standard deviations of twenty images for H exponents varying 

from 0.1 to 1.0 with an increment of 0.05 are reported here. 

 

4.2.1 Verification of fractal analysis codes using Weierstrass Cosine Function (WCF) 

The fractal 1D synthetic signals based on WCF are the input to the fractal analysis codes which 

estimate fractal dimensions or the H exponents. Table 4.2 presents the computed H exponents 

obtained by three methods. The table includes results for both the fBm and fGn type signals. 

Differences between the computed and exact values, presented in the form of percentage errors, 

are also given in the table. 

Table 4.2: Hr, Hp and Hw computed by R/S, PSD and Wavelet analyses for the Weierstrass cosine 

function. 

 RS PSD Wavelet 
 fBm fGn fBm fGn fBm fGn fBm fGn fBm fGn fBm fGn 

H-
input Hr Hr 

%Error 
of Hr 

%Error 
of Hr Hp Hp 

%Error 
of Hp 

%Error 
of Hp Hw Hw 

%Error 
of Hw 

%Error 
of Hw 

0.10 0.92 0.36 -819.49 -259.15 0.03 -0.63 72.94 734.37 0.04 -0.17 61.52 118.50 
0.15 0.94 0.36 -523.91 -139.14 0.11 -0.56 26.28 473.65 0.09 -0.21 38.56 121.99 
0.20 0.94 0.37 -371.81 -85.26 0.19 -0.49 4.91 346.24 0.15 -0.23 26.38 124.31 
0.25 0.95 0.39 -278.79 -56.65 0.27 -0.43 -6.40 271.08 0.20 -0.24 19.24 125.13 
0.30 0.95 0.42 -216.03 -39.48 0.34 -0.37 -13.44 222.47 0.26 -0.23 14.52 124.34 
0.35 0.95 0.45 -170.96 -28.39 0.41 -0.31 -18.39 188.36 0.31 -0.21 11.15 122.08 
0.40 0.95 0.48 -137.21 -20.58 0.49 -0.25 -22.08 162.01 0.37 -0.18 8.61 118.67 
0.45 0.95 0.52 -110.71 -14.76 0.56 -0.19 -23.70 142.05 0.42 -0.14 6.64 114.56 
0.50 0.95 0.55 -89.54 -10.09 0.62 -0.14 -23.19 127.36 0.47 -0.10 5.09 110.12 
0.55 0.95 0.58 -72.32 -6.30 0.66 -0.09 -20.72 116.33 0.53 -0.05 3.85 105.66 
0.60 0.95 0.62 -57.95 -3.10 0.71 -0.05 -17.87 107.60 0.58 -0.01 2.84 101.40 
0.65 0.95 0.65 -45.77 -0.32 0.75 -0.01 -14.83 101.18 0.64 0.02 2.03 97.52 
0.70 0.95 0.68 -35.20 2.25 0.80 0.02 -14.44 96.65 0.69 0.06 1.36 94.12 
0.75 0.95 0.71 -26.10 4.72 0.85 0.05 -13.31 93.10 0.74 0.08 0.81 91.27 
0.80 0.94 0.75 -18.08 6.87 0.89 0.06 -11.69 91.96 0.80 0.10 0.36 88.97 
0.85 0.94 0.78 -11.05 8.73 0.94 0.09 -10.51 89.64 0.85 0.12 -0.01 87.21 
0.90 0.94 0.80 -4.70 10.68 0.99 0.11 -9.47 88.13 0.90 0.13 -0.32 85.89 
0.95 0.94 0.83 1.00 12.72 1.04 0.07 -9.42 92.22 0.96 0.14 -0.57 84.94 
1.00 0.94 0.85 6.03 14.97 1.02 -0.01 -1.60 101.35 1.01 0.15 -0.78 84.29 
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Figures 4.4 (a) and (b) show the Richardson plots obtained by three methods for the WCF. For 

R/S and Wavelet methods the log-log plots are linear with correlation coefficients more than 0.9 

(Figure 4.4 (a)). However for the PSD analysis, the correlation coefficient is very low 

(Figure 4.4 (b)). A change in data range could not improve the correlation coefficients. 

Nevertheless the H exponents calculated from the slopes are found to be close to the input H. 

Figure 4.5 shows the correlation between the estimated and actual values for the fBm type signal. 

While PSD and Wavelet analyses show good correlations between estimated and the input H 

exponents, R/S analysis gives very high percentage errors particularly for low values of H. This 

demonstrates that R/S analysis can not be used as an estimator of fBm type signal. This 

observation is in agreement with the similar work reported by Li [7]. It was reported that for fBm 

type signal, H exponents estimated by the R/S and PSD analyses are not the same i.e. 

)()( fBmHfBmH pr ≠ . To be in agreement of H exponents, the fBm signal needs to be 

transformed to fGn for R/S analysis. It was demonstrated by Li that )()( fBmHfGnH pr = which 

can be seen in Figure 4.5 as well. 

For estimation of correct fractal dimensions, linear correlations between input and computed H 

exponent values are obtained. These linear correlations are the calibration equations. For R/S 

analysis to get comparable H values, fGn type signals are used. Table 4.3 presents the calibration 

equations, regression coefficients to show the goodness of fit, data range before and after 

calibration, for the three methods for the 1D signal.  Improvement in the data range can be found 

after using the calibration equation for estimating the H exponents. Figure 4.6 shows percentage 

errors obtained before and after using the calibration equation for correction of the H exponents. 

Percentage errors for H are found to be less than 10% within the data range of 0.25 to 0.95 for 

the worst performing PSD analysis. 

 

Table 4.3: Calibration equations for fractal analysis of 1D signal with the range of 0.1 to 1.0. Here x is the 

estimated Hurst exponent and y is the corrected Hurst exponent. 

Method Type Calibration equations Regression co-
efficient 

Range (before 
calibration) 

Range (after 
calibration) 

R/S analysis fGn y = 1.6492x - 0.4183 R2 = 0.9931 0.49 0.81 
PSD analysis fBm y = 0.8772x + 0.0122 R2 = 0.98 1.01 0.88 
Wavelet analysis fBm y = 0.9285x + 0.0608 R2 = 1 0.97 0.90 
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Figure 4.4: Richardson plots for Weierstrass cosine function by a) RS and Wavelet analyses 

 b) PSD analysis 
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Figure 4.5: Correlation between calculated H and input H for the fBm type Weierstrass cosine function 

(WCF). Note that R/S`analysis generates the worst results for the fBm form of the`WCF. The results 

improve when fGn type was used. 
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Figure 4.6: % Errors estimated using calibrated Hurst exponent values for WCF before and after using the 

calibration equation. Note that Wavelet analysis generates the best results. 
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4.2.2 Verification of fractal analysis codes using fBm images 

For verification of the developed fractal analysis codes, fBm type synthetic images have been 

generated using Fourier filtering algorithm as described in section 4.1. Variation of complexity is 

incorporated in the image by the H exponent. Complexity of the surface increases with 

decreasing H where 10 ≤≤ H . Input H was varied from 0.1 to 1.00 with an interval of 0.05 for 

generating 19 sets of synthetic images. For each set 20 images were generated stochastically 

using random variables. The 3D representations of the fBm type synthetic images are shown in 

Figure 4.2. To obtain fGn type of image, shown in Figure 4.3, first derivatives or gradient of the 

fBm image is taken.  

Tables 4.4 presents the estimated Hr, Hp and Hw obtained respectively by the R/S, PSD and 

Wavelet analyses. Standard deviations of the H exponents for 20 images are included in the same 

table. Variations of the standard deviations show the randomness of the images generated for a 

specific H exponent and may not have effect on the robustness of the algorithm used. It may be 

understood from the listed results that Wavelet analysis is more sensitive to the randomness than 

the R/S analysis since the standard deviations for the Wavelet analysis has wider range.   

Richardson plots for the fBm images are given in Figures 4.7 (a) and (b). For the PSD analysis, 

unlike WCF implementation, the correlation between logarithmic power and frequency is linear 

and the correlation coefficient is found to be more than 0.9. The R/S and Wavelet analyses of the 

fBm images show linear correlations with correlation coefficients more than 0.95 as well. 

Figure 4.8 presents variations of estimated H from fBm images with the input H. From the 

deviation between the input and estimated values, it is found that errors are approximately within 

±  20% for the H computed by PSD and Wavelet analysis, however for R/S analysis the errors 

are found to be substantial. R/S analysis fails to generate correct H exponent for the fBm type 

signal, as discussed earlier, particularly for lower H exponent. The results are improved when 

fGn type images are used. This can be seen in Figure 4.8, where the correlation between 

estimated H and the input H is improved when fGn type images are used for the R/S analysis. 

Using the input and estimated H parameter, the calibration equations are derived which are 

presented in Table 4.5. These calibration equations are used for correction of the H exponents 

when real images are analyzed. After calibration the data range improves remarkably from 0.25 

to 0.86 for R/S analysis. Figure 4.9 shows the percentage errors for the calibrated H exponents, 

where the errors are within 10% for the PSD and Wavelet analysis and relatively higher for the 

R/S analysis.  
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Table 4.4 The Hurst exponents estimated R/S, PSD and Wavelet analyses of 380 images. For R/S analysis fGn type images were used.  

R/S Analysis PSD Analysis Wavelet analysis 

H-input 
Average 

Hr Corr.Hr SD 
% Error 
for Hr 

% Error 
corr. Hr 

Average 
Hp Corr.Hp SD 

% Error 
for Hp 

% Error 
corr. Hp 

Average 
Hw Corr.Hw SD 

% Error 
for Hw 

% Error 
corr. Hw 

0.10 0.48 0.06 0.04 377.77 -37.00 0.04 0.09 0.07 -63.45 -10.52 0.02 0.07 0.07 -75.33 -29.62 
0.15 0.51 0.16 0.05 238.23 8.56 0.15 0.20 0.07 -3.17 31.98 0.08 0.13 0.09 -45.21 -16.12 
0.20 0.55 0.29 0.06 172.98 46.58 0.17 0.22 0.07 -17.34 9.00 0.20 0.24 0.08 -0.48 19.22 
0.25 0.52 0.21 0.05 108.79 -15.12 0.19 0.24 0.07 -25.39 -4.33 0.23 0.27 0.08 -6.96 8.32 
0.30 0.56 0.35 0.06 87.55 16.52 0.26 0.31 0.07 -14.62 2.89 0.27 0.31 0.09 -10.17 2.12 
0.35 0.58 0.40 0.07 65.19 14.82 0.27 0.32 0.09 -24.00 -9.00 0.37 0.41 0.12 6.33 15.81 
0.40 0.56 0.35 0.05 40.91 -11.78 0.34 0.39 0.07 -14.75 -1.66 0.42 0.45 0.07 3.97 11.87 
0.45 0.60 0.47 0.06 33.11 4.92 0.38 0.44 0.06 -14.69 -3.07 0.48 0.50 0.10 5.56 12.11 
0.50 0.60 0.46 0.06 19.35 -7.08 0.46 0.51 0.07 -8.99 1.44 0.53 0.55 0.10 5.09 10.62 
0.55 0.61 0.50 0.05 10.28 -9.51 0.51 0.56 0.07 -7.55 1.91 0.61 0.63 0.10 10.22 14.72 
0.60 0.62 0.55 0.06 3.47 -9.01 0.58 0.63 0.06 -3.32 5.33 0.65 0.68 0.11 8.99 12.82 
0.65 0.65 0.63 0.08 -0.56 -2.75 0.60 0.65 0.07 -8.09 -0.12 0.74 0.76 0.10 13.57 16.64 
0.70 0.70 0.80 0.07 -0.47 14.58 0.63 0.69 0.09 -9.44 -2.04 0.81 0.83 0.10 16.21 18.67 
0.75 0.69 0.78 0.07 -8.06 3.73 0.70 0.75 0.08 -6.75 0.14 0.87 0.89 0.12 16.02 18.05 
0.80 0.70 0.80 0.09 -12.80 0.62 0.75 0.81 0.08 -5.78 0.67 0.89 0.91 0.11 11.46 13.26 
0.85 0.73 0.91 0.08 -14.28 7.04 0.80 0.86 0.07 -5.31 0.74 0.92 0.94 0.09 8.56 10.12 
0.90 0.72 0.90 0.07 -19.47 -0.36 0.86 0.91 0.09 -4.43 1.28 1.00 1.01 0.09 11.58 12.73 
0.95 0.72 0.89 0.05 -24.00 -6.59 0.91 0.96 0.08 -4.29 1.11 1.03 1.04 0.13 8.33 9.33 
1.00 0.73 0.92 0.10 -26.77 -7.79 0.95 1.00 0.06 -4.77 0.35 1.15 1.16 0.10 15.23 15.73 

SD: Standard Deviation 
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Figure 4.7: Richardson plots for  fBm images by a) RS and Wavelet analyses b) PSD analysis 
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Figure 4.8: Correlation between calculated H and input H for synthetic images. Note that R/S analysis 

generates better results for fGn type image. 

 

 

Table 4.5: Calibration equations for fractal analysis of image. Here x is the estimated Hurst 

exponent and y is the corrected Hurst exponent. 

Method Type Calibration equations Regression co-
efficient 

Range (before 
calibration) 

Range (after 
calibration) 

R/S analysis fGn y = 3.3755x - 1.5497 R2 = 0.9638 0.25 0.86 
PSD analysis fBm y = 0.9933x + 0.0515 R2 = 0.9961 0.92 0.91 
Wavelet analysis fBm y = 0.8231x + 0.0614 R2 = 0.995 1.13 0.93 
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Figure 4.9: % Errors estimated using the Hurst exponent values for the fBm type images 

 

4.3 Conclusions 

In this chapter validation report of the fractal analysis codes based on R/S, PSD and Wavelet 

methods, which have been used for computing fractal dimensions for microstructural and 

fractographic images in this work, has been presented. Synthetic 1D signals based on Weierstrass 

Cosine Function (WCF) and images based on fractional Brownian motion (fBm) were generated 

for the H exponent varying between 0.1 and 1.0 with an increment of 0.05. Analysing 19 WCF 

signals and 380 fBm images by three fractal analysis algorithms, the following conclusions can 

be made: 

• While PSD and Wavelet analysis for estimating H show good correlations, R/S analysis 

generates very high percentage errors particularly for low values of H. Usage of fGn type 

signal and images instead of fBm type for the R/S analysis reduces the errors.  

• Percentage errors are found to be very high for low values of H exponent for all three 

methods. Amongst those, Wavelet appears to be the best method and R/S analysis is the 

worst estimator of 1D signals. 
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• Percentage errors are minimized by using calibration equations which essentially the straight 

lines correlating input H with the estimated H values when the fBm type signals are taken as 

standard. The correlation coefficient is found to be excellent for all the methods. 

• Analysis of 380 fBm type images show standard deviations varying between 0.04 and 0.13. 

Variations of the standard deviations show the randomness of the images generated since 

they are generated using random functions. Wavelet analysis is more sensitive to the 

randomness than the R/S analysis since Wavelet analysis generates greater range of standard 

deviations. 
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5 

FRACTAL ANALYSIS OF 

MICROSTRUCTURAL IMAGES 

 

Investigation of materials invariably requires usages of high resolution images of material 

structures captured by Scanning Electron Microscopes (SEM), Transmission Electron 

Microscopes (TEM) and/or Atomic Force microscopes (AFM) for microstructural 

characterization and quantification of microstructural features, and subsequent 

establishment of correlation of the quantitative parameters with the material properties. 

Often microstructural images of materials exhibit self similar structures or patterns. These 

patterns are formed due to network of grain boundaries, presences of precipitates, uneven 

surface elevations, etc. Microstructural images containing self similar patterns at different 

scales or resolutions are said to have fractal property.  It is unaffected by translations, 

rotations, projections and many other operations with regard to images. This makes the 

fractal analysis a useful technique for quantifying microstructural images by fractal 

dimensions. 
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This chapter presents fractal analysis of a set of microstructural images of high strength 

low alloy (HSLA) steel. Preparation of samples of metallic materials in order to acquire 

SEM images with prominent morphological characteristics is an involved task. Detailed 

discussion on the procedure is given in the first section followed by results and discussion 

and conclusions. 

 

5.1 Preparation of metallographic samples 

The SEM microstructure is obtained by etching the specimen surface by an appropriate 

chemical reagent which is selected according to the material used. Typically micrographs 

are analysed for measuring grain size, identifying various microstructural phases along 

with their distributions, and to ascertain chemical homogeneity. In addition, formation of 

sub structures due to precipitation and plastic deformation is identified and measured from 

micrographs. Since the grain boundaries and some precipitates like carbides, nitrides, etc 

are chemically more active, they are etched more forming grooves or pits. The differential 

scattering of secondary and back scattered electrons by constituent parts of microstructure 

aids identification of various sub structures in the SEM images. Features observed under 

the microscope therefore depend upon the surface preparation procedure. This would 

subsequently affect the intensity or brightness of an image. 

For the preparation of metallographic samples, specimens of HSLA steel at various aging 

conditions have been used. The heat treatment scheme and the corresponding mechanical 

properties are given in Appendix-I. Various steps followed for the preparation of 

metallographic samples are described below: 

Cutting: Slow speed diamond cutter (ISOMET 4000) was used for cutting out samples of 

approximately 1cm x 1cm x 1cm dimension. 

Mounting: The samples were mounted using the conductive copper powder in a molding 

machine. The sample surface is exposed when it is fixed inside the solidified copper mold. 

Grinding: This process eliminates uneven surface elevation due to the mounting of the 

sample in the copper mold. The exposed surface becomes flat since the surface inclination 

is eliminated. 

Paper polishing: To generate a polished surface, emery papers of various grid sizes were 

used. The coarsest paper was used first and finally ended with the finest one. The grid sizes 
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used here were 80, 120, 200, 400, 500, 800, 1000 and 1200 particles per square inch. This 

differential grinding helps to remove scratches.  

Cloth polishing: This is the finest polishing for getting mirror finished surface. Alumina 

powder (Al2O3) is used as abrasive. The Al2O3 particles are of different sizes: 3 micron, 1 

micron and 0.05 micron. In addition to Alumina polishing, to get a completely strain free 

mirror finished sample, Colloidal Silica (OPSOT) of 0.04 micron was used. 

Etching: For etching the smooth sample, 4% nital (96% C2H5OH+ 4% HNO3) is used. The 

sample is submerged for 40-50 seconds in the solution. The surface becomes dull which is 

cleaned in distilled water followed by acetone. 

To examine the metallographic samples, JEOL JSM 840A SEM equipped with Noran 

Quest energy dispersive X-ray microanalysis (EDS) system was used. Digital images were 

stored in “jpg” format for fractal analysis. 

 

5.2 Results and Discussion 
Fractal dimensions were computed using the correlations between the frequencies/scales 

and the measured quantities like energy, power or R/S data, presented in Table 4.1. Higher 

the fractal dimension, higher the energy or power content in an image. Higher energy 

signifies more information in the image for which complexity in image increases. 

Two types of images have been analysed for microstructural quantification. They are back-

scattered electron (BE) and secondary electron (SE) images. Difference between these two 

image types and the electron imaging principles were discussed in chapter 2. Sensitivity of 

the fractal parameters with respect to magnifications, spatial locations and pre-processing 

of images are assessed and presented here. Three methods, namely, R/S analysis, PSD 

analysis and Wavelet analysis have been employed. Theoretical background and 

algorithms of these methods have been discussed in previous chapters. For denoting fractal 

analysis of microstructural images subscript “m” is used, and for distinguishing methods, 

“r”, “p” and “w” are used for R/S, PSD and Wavelet analyses respectively. 

Selection of appropriate magnification for fractal quantification is imperative since natural 

images have multi fractal characteristics and fractal behaviour becomes prominent in 

certain length scales. To identify self-similar or self-affine characteristics of 

microstructural images, PSD analysis has been employed to ascertain the acceptable 
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magnification for image acquisition by the SEM.  Fractal dimensions of microstructural 

images of the identified magnification are obtained and reported with appropriate error 

estimation for both the SE and BE images. Finally correlations between fractal dimensions 

and mechanical properties have been discussed. 

 

5.2.1 Effect of magnification, spatiality and image preprocessing on fractal 

dimensions 

Invariance property of fractal dimensions has been investigated since it is important to 

check how sensitive the fractal parameter is if the operating conditions are changed. It is 

essential that the fractal dimension should be reproducible as well as that it remains 

invariant to various external operating conditions. In addition, the effects of spatiality i.e. 

image taken at various locations on the same specimen surface, and pre processing on 

fractal dimensions have also been investigated.  

a) Effect of magnification and spatiality 

The effect of magnification and spatiality on fractal dimension computed using BE and SE 

type images can be seen in Figure 5.1. The error bars shown in Figure 5.1 (a) were 

obtained by analysing 10 images captured from different locations of the same 

metallographic samples. 

It can be pointed out that fractal dimensions vary with magnification. Generally negative 

correlation exists between fractal dimension and magnification. As the magnification 

increases, field of view decreases with increased details. Smaller field of view reduces the 

information content of the image and therefore fractal dimension reduces. Although at 

lower range of magnification, a positive correlation may exist. Since at very low 

magnification, micro details are not captured making the image featureless. The SE images 

have the similar inverse correlation with the magnification. However the fractal 

dimensions computed from the SE images are less than the same computed from the BE 

images which indicates that information or signal content in BE images are more than the 

SE images. There is a similarity trend found between fractal dimensions obtained by 

Wavelet method and RS method. Fractal dimensions estimated by the PSD method are 

found to be the lowest for magnification 2000x. 

Effect of spatiality is presented for 1000 magnification in Figure 5.1 (b & d). It can be seen 

that, for the SE images, the effect is minimum for the Wavelet analysis, whereas for the 
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PSD analysis the variation of fractal dimension is ~12%. Similar trend is found for the BE 

images. Fractal dimensions are found to be approximately invariant to the spatiality in all 

the cases. 

c) Effect of pre-processing 

Two image pre-processing techniques such as histogram equalization and binarisation have 

been used for enhancing image quality as well as to distinguish prominent features  prior to 

applying fractal analysis routines for both the BE and SE images. It has been specified in 

the previous sections that fractal dimensions of BE images are more than SE images. The 

trend remains the same for both the cases. Only results obtained from the BE images are 

presented here for better appreciation of results. 

 

 
Figure 5.1: Variations of fractal dimensions with magnifications and spatiality a) magnification (BE) 

b) spatiality (BE) c) magnification (SE) and d) spatiality (SE). 

Figure 5.2 show the effect of preprocessing on fractal dimensions estimated by three 

methods for the BE images captured at different magnifications and from different 
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locations of the same specimen. Each of the plots shows variations of average fractal 

dimensions estimated from un-processed imaged and the processed images as well. It can 

be seen that preprocessing changes fractal dimensions. For the binarised image, the 

computed fractal dimensions are the largest followed by the histogram equalization. The 

unprocessed image generates the lowest fractal dimensions. Similar trend is observed for 

the PSD and Wavelet analyses shown in the same figure. 
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Figure 5.2: Effect of preprocessing on fractal dimensions for BE type microstructural 
images captured at a) different magnification (RS), b) different spatiality (RS), c) different 
magnification (PSD), d) different spatiality (PSD), e) different magnification (Wavelet) and 
f) different spatiality (Wavelet).  



 115

5.2.2 Self-similar & self-affine characteristics of microstructural images 

For the characterisation of materials, surfaces of materials are observed under high 

resolution microscopes with different resolving capabilities. The SEM is used for viewing 

objects by magnifying it 15 to 100,000 times or more. Magnification is controlled by 

varying the size of the probe by which an object is scanned. Low magnification 

micrographs can not be photographically enlarged or zoomed to obtain detailed 

information. This is because the magnification is controlled by changing the beam 

diameter or the probe size. For lower magnification, beam diameter is enlarged so that 

more area can be scanned with fewer details. Hence the resolution of the image formed on 

the display unit decreases, increasing the total field of view. Increasing resolutions aid in 

acquiring detailed and new features in microstructures which is not discernable in lower 

magnification. The new features may or may not have fractal characteristics. Since 

microstructure has multifractal chracteristics, it is important to understand the appropriate 

length scales within which they remain self-affine and/or self-similar.  

This section reports PSD method, based on fast Fourier Transformation (FFT) algorithm, 

adopted for verifying the statistical self similarity and self-affinity in microstructural 

images of HSLA steel. The procedure was first applied on synthetic images to show the 

degree of self similarity or self-affinity in them and finally it has been extended to 

microstructural images of HSLA steel. The technique proposed in this section needs to be 

used as a precursor to identify appropriate characteristic length (minimum length scale for 

measuring a complex or fractal object) and resolution for implementing fractal based 

quantification of microstructural images. As mentioned in earlier chapters, fractal based 

quantification is useful for understanding multi-dimensional or multifractal characteristic 

in microstructure and how these dimensions contribute to the evolution of different sub-

structures and statistically self-affine geometric patterns in microstructural images of 

materials.  

Images of microstructures were obtained for three different magnifications of 1000, 2000 

and 4000 as shown in Figure 5.3. The area viewed under the maximum resolution (4000) 

was 37.5 x 37.5 μm2, which approximately relates to a single grain size. Other resolutions 

would correspond to proportionately larger areas. 
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Figure 5.4 presents the radially averaged PSD characteristics with respect to the length 

scale in micron for images with 1000, 2000 and 4000 magnifications. In the same Figure, 

images of 2D power spectra are shown in insets. 

 
Figure 5.3: SEM images of microstructure for three different magnifications of 1000, 2000 and 4000 

 

 
Figure 5.4: Radially averaged PSD characteristics with respect to the length scale in micron for 

images with 1000, 2000 and 4000 magnifications. 

Following points are observed in the PSD characteristics of the HSLA microstructures: 

• A bilinear trend in the log-log plots of the PSD vs. length scale with a unique cross 

over point at ~1μm for all the magnifications is observed. 

• The estimated PSD value increases as the length scale increases. 

• Data scatter is more at higher length scales. 
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Evidence of non-liner log-log plot of the PSD vs. scale is found in the literature [1-4]. The 

bilinear feature signifies two characteristics length scales and a crossover point [3,4].  

Initial length scales when λ<1μm, is referred to as zone I, where Hurst exponents obtained 

for the images were found to be more than 1 for 2000 and 4000 magnifications.  

For length scale >1μm, in zone II, negative Hurst exponent was obtained. The negative 

Hurst exponent signifies “monoscale” [5,6] , where the effect of short length scale (high 

frequency component) is highly significant compared to the low frequency component as 

shown in Figure 5.5.  

 

Figure 5.5: Scaling behaviour represented by the Hurst exponent a) H<0, b) 0<H<1 and c) H>1  

 

Reverse fractal characteristics between zone I and zone II can be appreciated from the 

classification of surfaces based on the Hurst exponent. Three types of surfaces according to 

H are reported as 

(i) H < 0: “monoscale”, surface looks like a landscape with hills of approximately same 

size, the surface height is bounded; The results show that the slope β approaches 0 as the 

magnification increases when the length scale is more than 1μm, indicating uncorrelated 

white noise (P(k)=const). Fractal quantification is not recommended within this length 

scale. 

(ii) 0 ≤ H < 1: “rough”, looks like rocky mountains with smaller and higher peaks and 

unbounded height; Microstructures represented by H within this range is classified as self-
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affine fractal microstructures. Here microstructure at 1000 magnification is found to be self 

affine when the length scale is less than 1μm. 

(iii) H ≥ 1: “smooth”, the largest scale defines the surface roughness. Within a single grain 

for 4000 resolution and proportionately larger area for 2000 resolution, self-similar 

characteristic is observed in the microstructure. Microstructural objects measuring less 

than 1μm such as width of a single lath, interfaces between α-α phases and α-γ phases, 

identifiable through intensity gradients in images, are found to be self-similar. The 

microstructure corresponding to large wave number or high frequency is thus self similar 

for high magnification observations. 

Bilinear characteristic of the radially averaged power spectrum for the image of 1000 

resolution is shown in Figure 5.6. For all resolutions, Table 8.2 gives the values of H, D, 

the standard deviation (STD), standard error (Δβ), and corrected H and % error for 

computing D from the exponent β.   
 

Table 5.2: Bilinear characteristic of the radially averaged FFT power spectrum of microstructural 

image for small and large length scales with corresponding D and H values. 

ZONE I: Short length scale (λ<1μm) 

Magnification 

Slope, β Offset R2 STD SE, Δβ Hpsd Hcorr  D 

%Error 

(D) 

1000 3.4317 16.4000 0.9789 0.4522 0.2778 0.72 0.77 2.23 6.23
2000 4.1921 19.5120 0.9679 0.1812 0.2690 1.10 1.16 1.84 7.30
4000 4.9000 22.3840 0.9764 0.2957 0.4140 1.45 1.52 1.48 13.94

ZONE II: Large length scale (λ>1μm) 

1000 0.8129 11.1720 0.8755 0.1285 0.0605 -0.59 -0.56 3.56 0.85
2000 0.6889 11.9380 0.8210 0.1464 0.1638 -0.66 -0.62 3.62 2.26
4000 0.4354 13.0720 0.6041 0.1247 0.1397 -0.78 -0.75 3.75 1.86

Bilinear characteristics of the radially averaged power has been reported by previous 

investigators [3,4] for microstructures containing various forms of martensitic 

morphologies such as lenticular, thin plate, butterfly and lath. The results show that while 

the microstructure has self-affine (β=3.4317 and H=0.7713) behaviour for short length 

scale for 1000 magnification, it has negative H exponent i.e. it is monoscale at large length 

scales. Monoscale object has the spatial behavior which is dominated by a single 

characteristic length indicated by the cross over point in the bilinear radially averaged FFT 

power spectrum shown in Figures 5.4 and 5.6. For instance, the martensitic microstructure 
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can have characteristic lengths like width of the lath martensite, self-accommodating 

packets, a single grain, etc.  Microstructure above the characteristic length scale more than 

1 μm is classified as non-fractal or ‘monoscale’. The characteristic length scale of ~1 μm 

indicates width of lath martensites which are diagonally oriented feature as explained using 

the power spectrum image. It is possible to specify the dimensionality of the self-

accommodating packets (above 1μm) by analysing microstructures of lower 

magnifications as reported in reference [3]. The multi-scaling or muti-fractal behaviour of 

microstructure may limit the universality of fractal behaviour within wider length scales, 

however it elicits the morphological self-similarity or self-affinity which would have an 

intrinsic effect on the deformation behaviour of materials especially when the progressive 

evolution of microstructure creates random behaviour from the ordered structure. The lath 

martensite feature visible under the Transmission Electron Microscope (TEM) is shown in 

Figure 5.7 which shows diagonally oriented structure with width less than 1 micron.  
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Figure 5.6: Radially averaged FFT power spectrum which has bilinear characteristic with a 

crossover point at ln(k)~2μm-1. 
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Figure 5.7:  TEM image of micostructure at WQ condition showing diagonally oriented lath 

martensite 

True fractal behaviour (2<D<3) is only observed for the image with 1000 magnification 

having length scale less than 1 μm. This result agrees with the same reported in [3] where 

light microscopic images were analysed. Additionally it can be seen that higher 

magnifications generate D<2 i.e. H>1. 

For estimating fractal dimensions from microstructural images, it is therefore important to 

recognize the length scales which can identify the true fractal behaviour. Too small 

characteristic length will always generate self-similar behaviour H ≥ 1 while larger length 

scales will result in “monoscale” random surface. In addition to the length scale, selection 

of magnification of the image is vital, if true fractal characteristics need to be evaluated. 

Additionally it may be pointed out that at high magnification electron-specimen interaction 

generates high level of noise in SEM images which impairs the Lambertian relationship 

between image intensity and fractal dimension representing surface roughness. This 

investigation concludes that images of 1000 magnification show true fractal behaviour for 

the length scale less than 1μm and “monoscale” fractal behaviour for length scale above 1 

micron for images at all three magnifications.  
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5.2.3 Fractal analysis of microstructural images 

The preceding section emphasizes that the magnification of 1000 be taken for acquiring 

microstructural images. Microstructural images for samples of WQ condition and 

tempering temperatures of 350oC, 450 oC, 550 oC, 650 oC and 675 oC were captured in BE 

and SE modes. Microstructural images in the intermediate temperatures (400oC, 500 oC, 

600 oC and 700 oC) could not be made available for fractal analysis.  Figures 5.8 and 5.9 

show representative microstructural images of BE and SE types respectively. For each 

case, 10 images were taken from various regions of the metallographic sample to ascertain 

statistical relevance. Total 120 images were analysed and fractal dimensions are presented 

in this section. The logarithmic variations of R/S, power and energy with the scale or 

frequency of measurement for the R/S, PSD and Wavelet methods respectively are plotted 

in Figure 5.10. Each log-log plot presents data for both the BE and SE type images. The 

variations of measured quantity are found to be nominal for the images corresponding to 

two aging temperatures. The goodness of fitting of straight lines through the data points is 

excellent for the R/S analysis and found worst for the PSD analysis, although the 

regression coefficients are more than 0.9. It needs to be pointed out that for the R/S and 

Wavelet analysis methods, fractal dimensions remain scale invariant for three decades 

whereas for the PSD analysis they remain scale invariant in one decade. 

Fractal dimensions were computed from the slope of the log-log plots using the 

correlations presented in Table 4.1. Figures 5.11 and 5.12 show the variations of fractal 

dimensions with the aging temperatures for the BE and SE images respectively and the 

corresponding data is presented in Tables 5.3 and 5.4 respectively. The tables show 

standard deviations (stdev), maximum and minimum values of the Hurst exponent, H, 

coefficient of variance (ratio of standard deviation and average) and the fractal dimensions.  

From Tables 5.3 and 5.4 and the plots (Figures 5.11 and 5.12), it can be seen that 

maximum data scatter is found for the PSD analysis. SE images show more data scatter 

than the BE images. This indicates that noise level is higher in the SE images than the BE 

images which agree with the general principle of electron imaging, discussed in chapter 2. 

PSD and R/S methods generate fractal dimensions which can clearly distinguish the 

morphological changes at various aging temperatures. However Wavelet analysis has the 

poorest discrimination capability since the fractal dimension is found to be nearly invariant 

throughout the aging process. Minimum fractal dimension is obtained at 450oC 

temperature by all the three analyses. 
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a b 
c d 
e f 
Figure 5.8: Representative microstructural images (1000x BE type) of HSLA steel for various 

tempered temperatures a) WQ, b)350oC, c)450 oC, d)550 oC, e)650 oC and f) 675 oC . 
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a b 
c d 
e f 
Figure 5.9: Representative microstructural images (1000x SE type) of HSLA steel for various 

tempered temperatures a) WQ, b)350oC, c)450 oC, d)550 oC, e)650 oC and f) 675 oC . 
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Figure 5.10: Logarithmic variations of R/S value, power and energy  with the scale of 
measurement  by a) R/S analysis, b) PSD analysis and c) Wavelet analysis respectively. 
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Figure 5.11: Variations of fractal dimensions with the aging temperatures for the BE images 
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Figure 5.12: Variations of fractal dimensions with the aging temperatures for the SE images 
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Table 5.3: Data obtained by fractal analysis of microstructural images of BE type 

BE image  
Temperature WQ 350 450 550 650 675
Stdev 0.027 0.049 0.049 0.056 0.042 0.055
Max of Hmr 0.504 0.521 0.632 0.597 0.460 0.521
Min of Hmr 0.470 0.460 0.572 0.528 0.408 0.453
Coeff-of var (%) 5.629 10.019 8.076 9.950 9.602 11.194

R/S 

Dmr 2.516 2.502 2.389 2.422 2.582 2.518
Stdev 0.028 0.072 0.097 0.084 0.185 0.060
Max of Hmp 0.353 0.709 0.760 0.636 0.472 0.203
Min of Hmp 0.318 0.620 0.640 0.532 0.243 0.129
Coeff-of var (%) 8.342 10.773 13.914 14.327 51.765 36.207

PSD 

Dmp 2.664 2.319 2.302 2.402 2.700 2.828
Stdev 0.015 0.033 0.021 0.027 0.020 0.016
Max of Hmw 0.136 0.163 0.182 0.162 0.139 0.122
Min of Hmw 0.127 0.147 0.159 0.145 0.128 0.140
Coeff-of var (%) 5.457 5.457 20.974 10.530 14.243 12.093

Wavelet 

Dmw 2.877 2.855 2.836 2.850 2.874 2.890

 

Table 5.4: Data obtained by fractal analysis of microstructural images of SE type 

SE image  
Temperature WQ 350 450 550 650 675
Stdev 0.071 0.034 0.060 0.054 0.022 0.046
Max of Hmr 0.504 0.529 0.606 0.589 0.475 0.572
Min of Hmr 0.416 0.487 0.531 0.522 0.448 0.515
Coeff-of var (%) 15.500 6.631 10.609 9.760 4.674 8.425

R/S 

Dmr 2.527 2.498 2.439 2.438 2.539 2.459
Stdev 0.128 0.117 0.094 0.066 0.139 0.110
Max of Hmp 0.410 0.509 0.523 0.444 0.379 0.266
Min of Hmp 0.251 0.364 0.406 0.363 0.207 0.129
Coeff-of var (%) 38.692 26.926 20.193 16.309 47.489 55.757

PSD 

Dmp 2.660 2.574 2.560 2.581 2.735 2.837
Stdev 0.011 0.008 0.038 0.016 0.020 0.018
Max of Hmw 0.154 0.158 0.206 0.165 0.153 0.162
Min of Hmw 0.141 0.147 0.159 0.145 0.128 0.140
Coeff-of var (%) 7.561 5.457 20.974 10.530 14.243 12.093

Wavelet 

Dmw 2.850 2.850 2.831 2.849 2.859 2.857

 

5.2.4 Correlations between fractal dimensions and material properties 

For mechanical characterisation of the HSLA steel [7], properties like hardness, yield 

strength, ultimate tensile strength, percentage elongation, percentage reduction of area, etc. 

are evaluated by tensile test. Mechanical properties are listed in Appendix-I which have 

been used here to obtain their correlations with fractal dimensions. The correlation 

coefficients (CoR) are given in Table 5.5 for fractal dimensions computed by three 
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methods and for both the BE and SE type images. While the correlations are found to be 

negative for the hardness and strength properties, they are positive for the percentage 

elongation and reduction of area. The correlations (minimum Rel=0.53 for BE image and 

0.07 for SE image) are found to be worst for the R/S method and excellent for the PSD 

method. Figures 5.13 and 5.14 show the correlations between fractal dimensions and 

hardness for BE and SE images respectively. 

 

Table 5.5: Correlation coefficients (CoR) obtained between fractal dimension and material 

properties. The subscript Hv is for hardness, YS is for yield strength, UTS is for ultimate tensile 

strength, el is for percentage elongation and ra is for percentage area reduction. 

Image Method CoRHv CoRYS CoRUTS CoRel CoRra 
RS -0.84 -0.85 -0.75 0.53 0.85 
PSD -0.89 -0.92 -0.92 0.76 0.87 BE Wavelet -0.91 -0.90 -0.88 0.69 0.97 
RS -0.45 -0.51 -0.37 0.07 0.52 
PSD -0.94 -0.95 -0.91 0.83 0.87 SE Wavelet -0.89 -0.83 -0.89 0.80 0.90 
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Figure 5.13: Correlations between fractal dimensions estimated from BE images and hardness. 
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Figure 5.14: Correlations between fractal dimensions estimated from SE images and hardness. 

 

Previous investigators [7,8] have reported variations of microstructural constituents with 

the tempering temperatures. Four phases of steel can be identified in the microstructures: 

acicular ferrite, bainite, lath martensite and retained austenite. Second phase particles like 

carbide and carbo-nitrides are present in the form of precipitates. Progressive tempering 

produces copper precipitates which increase in volume fractions and play a crucial role in 

altering the mechanical properties. Below 550oC, there is decreasing trend of fractal 

dimensions, which signifies the gradual improvement of persistent behaviour in images. 

Persistent behaviour in the structural sense is smoothening or ordering. It was highlighted 

by previous investigators that up to 500oC temperature there is no change in 

microstructural morphology in micro level, however in nano scale, changes were identified 

from the TEM images. It was found out that copper was present as solid solution in the 

WQ state which started precipitating and form nano size copper particles. These particles 

grow in size, remain coherent up to 500oC temperature and then form large clusters of 

incoherent copper precipitates beyond 500oC tempering temperature. Mechanical 

properties like hardness, yield strength and UTS are maximum around 500oC, where the 

fractal dimensions are found to be minimum by all the three methods.  
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Beyond 450oC, fractal dimensions, computed by R/S and Wavelet analyses, increase upto 

650oC and then decrease nominally. However for the PSD analysis, fractal dimensions 

increase upto 675oC. This is due to break-up of martensitic lath, formation of tempered 

martensite, polygonisation of acicular ferrite as well as loss of coherency of copper 

precipitates. Morphological ordering is progressively broken between 450oC to 675oC 

temperatures, and higher fractal dimensions are obtained. Above 675oC, recovery of lath 

martensite and formation of new composite phase of martensitic island and retained 

austenite were identified during microstructural characterization which again generates 

ordered or persistent image characteristics. Reverse trend in fractal dimension could be 

found for the R/S analysis of samples aged at 650oC and it is expected that the similar 

trend reversal could be obtained for other methods if images of samples aged at 700oC 

temperature were analysed. The correlations between fractal dimensions and mechanical 

properties are found to be good and it is interesting to note that the morphological changes 

occurring in the nano scale could be identified by fractal analysis of images captured in the 

micro scale 

 

5.3 Conclusions 
The fractal analysis of microstructural images of HSLA steel reveals interesting findings in 

this chapter which are given below: 

• Sensitivity analysis to ascertain effect of magnification, spatiality and images 

preprocessing clearly brings out that fractal dimensions vary with magnifications 

inversely for both the BE and SE images. Fractal dimensions computed from the SE 

images are less than the same computed from the BE images which indicates that 

information or signal content in BE images are more than the SE images. Spatial effect 

on fractal dimensions is found to be minimum for the Wavelet analysis whereas for the 

PSD analysis the variation is maximum ~12%. Similar trend is found for the BE 

images. Image preprocessing changes fractal dimensions. For the binarised image, the 

computed fractal dimensions are the largest followed by the histogramme equalization. 

The unprocessed image generates the lowest fractal dimensions. Similar trend is 

observed for the PSD and Wavelet analyses as well for both image types.  

• By PSD analysis, self-similar and self-affine fractal behaviour of microstructural 

images for three magnifications has been determined. In addition to magnification, it is 

important to recognize the length scales which can identify the true fractal behaviour. 

Too small characteristic length will always generate self-similar behaviour (H≥ 1) 
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while larger length scales will result in “monoscale” random surface. This investigation 

concludes that images of 1000 magnification show true fractal behaviour for the length 

scale less than 1μm and “monoscale” fractal behaviour for length scale above 1 micron 

for images at all three magnifications 

• Fractal analyses of the HSLA steel at various tempering temperatures generate 

maximum data scatter for the PSD analysis. SE images show more data scatter than the 

BE images. This indicates that noise level is higher in the SE images than the BE 

images which agree with the general principle of electron imaging PSD and R/S 

methods generate fractal dimensions which can clearly distinguish the morphological 

changes at various aging temperatures. However Wavelet analysis has the poorest 

discrimination capability since the fractal dimension is found to be nearly invariant 

throughout the aging process. Minimum fractal dimension is obtained at 450oC 

temperatures by all the three analyses. 

• Good correlations between fractal dimensions and mechanical properties have been 

obtained. While the correlations are found to be negative for the hardness and strength 

properties, they are positive for the percentage elongation and reduction of area. The 

correlations (minimum  Rel=0.53 for BE image and 0.07 for SE image) are found to be 

worst for the R/S method and excellent for the PSD method. Below 550oC, there is 

decreasing trend of fractal dimensions, which signifies the gradual improvement of 

persistent behaviour in images. Persistent behaviour in structural sense is smoothening 

or ordering which could be due to the nano size copper precipitations, observed by the 

TEM, occurring between 350oC-550oC. The interesting finding of the fractal analysis is 

that the morphological changes occurring in the nano scale could be identified by 

fractal analysis of images captured in the micro scale. 
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6 

FRACTAL ANALYSIS OF 

 FRACTOGRAPHIC IMAGES 

 

Topographic variations on material surfaces are created by various damaging mechanisms like 

fracture, fatigue, creep, wear, corrosion, machining etc. These variations are caused due to the 

presence of voids, micro cracks, striation marks, cleavage planes, corrosion pits, etc. on the 

surfaces. Some of these characteristic features are the indelible signatures left behind on the 

material surface during the progression of damage. These characteristic features, identifiable in 

high resolution fractographic images, give meaningful information to material scientists studying 

the influence of micro-, meso- and macro-structural parameters on material behaviour for the 

assessment of structural integrity and lives of engineering components. The quantitative 

estimation of these characteristic features is necessary in order to establish correlations between 

material processing parameters, morphological characteristics of microstructures, test or service 

parameters and materials properties. For example, the size of dimples formed on fracture 

surfaces by coalescence of voids during ductile fracture can be correlated to the tensile properties 
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of materials. Similarly the blunted crack tip profile can explain the high fracture toughness 

property of materials. The interaction of voids with the crack tip can also be understood from the 

morphological characteristics of local fractographic features. In fatigue applications, from the 

striation spacing on fracture surfaces, the rate of crack growth can be assessed. All these 

fractographic features may create self-similar patterns in the statistical sense which essentially 

alter the roughness of the fracture surface. Fractal dimension computed from the fractographic 

image quantify the fracture surface roughness which may be found to be correlated to the 

damage resistance property of the material. 

This chapter presents fractal analysis of a set of fractographic images of the HSLA steels. 

Sensitivity of the fractal parameters with respect to magnifications, spatial locations and pre-

processing of images are assessed and presented as results. Later fractal dimensions obtained by 

three methods (R/S, PSD and Wavelet) have been reported with error estimates. Finally 

correlations between material properties and fractal dimensions computed from fractographic 

images have been discussed. Attempt has been made to develop models to predict mechanical 

properties based on fractal characteristics. 

 

6.1 Materials and fractographs 
Specimens of HSLA steel quenched and aged to produce ten variations of microstructural 

condition, described in Appendix-I, were fractured by pulling them under tensile loading and 

fracture surfaces were generated. These surfaces were examined in the SEM and digital images 

were captured and stored. For each aging temperature, multiple images were taken from different 

locations of the same specimen.  Mechanical and fracture properties, given in Appendix-I, have 

been used for presenting verification of the proposed fractal based correlations discussed later. 

 

6.2 Results and discussion 
Results of fractal analysis of fractographic images are presented in three subsections. Initially 

invariance property of fractal dimensions with respect to magnifications, spatial locations and 

pre-processing has been investigated. Fractal analysis of fractographic images has been carried 

out next using three methods of determination of fractal dimensions. For referencing, subscript 

“f” is used to denote fractographic source of images, and for distinguishing methods, “r”, “p” 

and “w” are used as subscripts for R/S analysis, PSD analysis and Wavelet analysis respectively. 

Finally, correlations between fractal dimensions and material properties have been discussed and 

development of models for predictions has been presented. 
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6.2.1 Effect of magnification, spatiality and image pre-processing on fractal dimensions 

a) Effect of magnification 

Using SEM, images of fracture surfaces were captured centred on the same location at 

magnifications varying from 200 to 4000. Below 200 magnification, the information in images is 

inadequate from the detail point of view, and above magnification of 2000, the information is too 

localized. It may be mentioned that as the magnification increases, less area is viewed with more 

details of features. This would invariably affect the fractal dimension, if the image is not fractal 

in the strict mathematical sense. A true fractal object shows self-similarity or self-affinity 

between the object parts and the overall features of the object. A natural image can have fractal 

behaviour within certain range of magnifications, as reported by previous investigators [1, 2]. 

Robustness of a particular method depends upon how insensitive the computed fractal 

dimensions are with change of magnification or any other operations on the image. Figure 6.1 

shows representative fractographic images at various magnifications. 

Figure 6.2(a) shows variations of fractal dimensions with magnifications obtained by the three 

methods employed. Generally, an inverse correlation is found between fractal dimension and 

magnification. Beyond 2000 magnification, the decreasing trend is persistent (D<2.5). Below a 

magnification of 2000, anti-persistent behaviour (D>2.5) is displayed. The Wavelet method 

always gives a anti-persistent behaviour. Table 6.1 presents various statistical parameters 

obtained from images. It can be seen that for unaltered images (i.e. with no pre-processing), the 

standard deviation is the largest for PSD analysis, which is less than 0.194, and the coefficient of 

variance (ratio between standard deviation and average) is less than 8%. The least standard 

deviation is obtained for the wavelet analysis, which is 0.123. 

 

b) Effect of spatiality 

Images from 21 different locations of the specimen at 1000 magnification were captured. Fractal 

dimension for each of these 21 images was computed by the three methods. Figure 6.2(b) shows 

the plot of the fractal dimensions for these images. Fractal dimensions estimated by PSD 

analysis method is more than the same estimated by the other two methods. The standard 

deviation is found to be the largest for the PSD technique, which is less than 0.04, and 

coefficient of variance is less that 1.3% as given in Table 6.1. The effect of spatiality on fractal 

dimensions is less in comparison to that of magnification since the standard deviation is lower 

for former than the later. With changes in magnification, changes of fractal dimension 
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demonstrate certain trends, whereas complete random digression is noticed with spatial 

variations. Similar variations of fractal dimensions estimated from the fracture surface ahead of a 

crack tip have been reported by previous investigators [3]. 

 

200x 1000x 

1400x 2000x 

3000x 4000x 
Figure 6.1: Fractographs of HSLA steel of WQ condition at various magnifications, as noted. 
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Table 6.1: Average fractal dimensions and statistical parameters obtained for images taken at different 
magnifications and locations (spatial variations). Data corresponding to pre-processed images are also 
included. 

Magnifications Spatial Variations 
Image state Method 

Average STD Range Coeff of 
var (%) Average STD Range Coeff of 

var (%) 
RS 2.519 0.182 0.557 7.226 2.664 0.027 0.206 0.010 
PSD 2.658 0.194 0.577 7.288 2.860 0.037 0.133 0.013 No Pre-

processing Wavelet 2.665 0.123 0.363 4.633 2.745 0.022 0.110 0.008 
RS 2.589 0.191 0.590 7.390 2.759 0.029 0.187 0.011 
PSD 2.657 0.193 0.629 7.273 2.835 0.043 0.153 0.015 Histogram 

Equalization  Wavelet 2.733 0.126 0.376 4.609 2.817 0.018 0.088 0.006 
RS 2.662 0.216 0.664 8.116 2.850 0.032 0.179 0.011 
PSD 2.752 0.130 0.410 4.712 2.669 0.033 0.133 0.012 

Binarization Wavelet 2.944 0.079 0.257 2.668 2.993 0.026 0.113 0.009 
 

c) Effect of pre-processing of images 

The digital images captured by SEM often require pre-processing depending upon the quality of 

images, especially for feature-based quantification. Since quantification of images by fractal 

dimension is a global quantification procedure, pre-processing may not be necessary. 

Nevertheless, it is important to ascertain whether pre-processing has any effect on fractal 

dimensions. For pre-processing two popularly used methods, i.e. histogram equalization and 

binarization, have been used for images at different magnifications and spatiality. In chapter 2, 

these two pre processing methods have been described. Figure 6.3 shows the effect of pre-

processing on images of low and high magnifications. 
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Figure 6.2: Variations of fractal dimensions with a) magnifications and b) spatiality for unprocessed 
fractographic images 
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a b
c d
e f

Figure 6.3: Unprocessed and pre-processed fractographs of HSLA steel of WQ 
condition at two magnifications: a) 1000x unprocessed, b)4000x unprocessed, 
c) 1000x histogram equalized, d) 4000x histogram equalized, e) 1000x binarized 
and f) 4000x binarized. 
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Figure 6.4 shows a set of plots which present the variations of fractal dimensions due to pre-

processing of images by histogram equalization and binarization for the three fractal analysis 

methods. The effects of magnification and spatiality can be noted in the plots. Results obtained 

from unaltered images are included in the same figure to highlight the effect of pre-processing on 

fractal dimensions. It can be observed that binarized images consistently generate higher fractal 

dimensions for R/S and Wavelet analyses. 

For PSD analysis, ‘no pre-processing’ and histogram equalization show similar trend for spatial 

varied images and generates larger values than the same computed from binarized images, as 

shown in Figure 6.4(d). However on variations of magnifications beyond 1800x, the effect of 

binarization is markedly different from the other two cases. In Figure 6.4 (c), it can be seen that 

unaltered and histogram equalized images generate similar fractal trend while for the binarized 

images, the variations of fractal dimensions with magnifications show reverse trend beyond 

1600x magnification, i.e. fractal dimension increases with magnification and approaches the 

limiting value of 3. At higher magnification, characteristic features identifiable in fractographs 

are found to be markedly different from that observed at lower magnification, as can be seen in 

Figure 6.3. This distinction is prominent in binarized images when the high frequency 

component is eliminated resulting in lowering of the slope of the fractal plot. This phenemona 

leads to the reversal of trend for the PSD analysis. 

Wavelet and R/S analyses show similar trends when the variations of fractal dimensions with 

respect to magnifications and spatiality are plotted, as in Figure 6.2. The range and standard 

deviation of fractal dimensions computed by the Wavelet method are found to be the least. This 

makes the Wavelet method least insensitive to magnification, spatiality and pre-processing of 

images. 

 

6.2.2 Fractal analysis of fractographic images 

Figure 6.5 shows representative fractographic images of fracture surfaces from specimens aged 

at various temperatures. In the fractographs, micro-voids or dimples with various sizes and 

shapes can be identified. Small, shallow, equiaxed micro-voids are pre-dominant in the WQ 

condition. However, specimens aged at temperatures between 400-500oC, exhibit mixed 

fractures, having flat quasi-cleavage features with small micro-voids. Increase in size of micro-

voids and disappearance of quasi-cleavage are observed in specimens aged above 550oC. 
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a b 

c d 

e f 

Figure 6.4: Effect of pre-processing on fractal dimensions for fractographic images 
captured at a) different magnification (R/S), b) different spatiality (R/S), c) different 
magnification (PSD), d) different spatiality (PSD), e) different magnification 
(Wavelet) and f) different spatiality (Wavelet)  
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WQ 450oC 

 
500 oC 600 oC 

675 oC 700 oC 

Figure 6.5: Fractographs of HSLA steel aged at various temperatures: (a) Water quenched WQ,  
(b) 450oC, (c) 500oC, (d) 600oC, (e) 675oC, and (d) 700oC.  

For implementing fractal quantification procedures, fractographic images of HSLA steel at ten 

different aging conditions have been captured by the SEM in SE mode. For each aging condition, 

10 images at 2000 magnification were taken to ascertain statistical relevance of the results. 

From the sensitivity analysis, it was revealed that fractal dimension changes with magnification 

for the fractographic images. The average fractal dimension for images between 200 to 4000 
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magnifications is found to be occurring approximately at 2000 magnification. Moreover each 

pixel of the image of 2000x measures 0.05 micron, which seems to be quite relevant to the length 

scale being investigated in this work. For computing fractal dimension, it is necessary to find out 

slope of the Richardson plot which is given by 

 
)__log(

)_log()(
tmeasuremenofScale

quantityMeasuredslope =  (6.1) 

Figures 6.6 (a), (b) and (c) show the Richardson plots obtained by R/S, PSD and Wavelet 

methods respectively. The plots corresponds to the WQ state and two different aging 

temperatures, i.e. 400°C and 700°C. 

For the R/S and Wavelet analyses, the logarithmic power is found to be a linear function of the 

logarithmic scale, and has regression coefficient of more than 0.95, whereas for the PSD 

analysis, the coefficient is found to be 0.89. Fitting error can be minimised by reducing the data 

range which subsequently reduces the length scale; however to maintain consistency throughout 

the investigation, N/2 data are used for fitting the line, where N is the number of pixels along the 

image width. Table 6.2 presents fractal dimensions estimated from fractographs obtained for 10 

aging temperatures. For each aging temperature, 10 images are used to compute the Hurst 

exponents (H). Statistical parameters such as average, standard deviations, maximum, minimum 

and coefficient of variance for the H are computed. To eliminate outliers, student’s t-test was 

performed and the average values were calculated. Figure 6.7 shows variations of fractal 

dimensions with aging temperatures. Consistent trend in variations of fractal dimensions with 

aging temperatures is observed, although the values are different for different methods. 

Consistent variations of fractal dimensions with aging temperatures, estimated from the 

fractographic images directly, can therefore be used for evaluation of materials. This finding is 

significant to materials research, especially with regard to directly using fractographic images, 

since the SEM imaging does not require extra effort in sample preparations [4] or 

implementation of advanced stereo photogrammtry [5] to get the digital elevation model of the 

fracture surface. 
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(a) 

(b) 

(c) 

Figure 6.6: Logarithmic variations of R/S value, power and energy  with the scale of measurement  by 
a) R/S analysis, b) PSD analysis and c) Wavelet analysis respectively for fractographic images 

y = 0.5478x + 1.1517
R2 = 0.9943

y = 0.6026x + 0.9415
R2 = 0.9917

y = 0.5923x + 0.9385
R2 = 0.9931

0

2

4

6

8

10

0 5 10 15
log (k)

lo
g(

R
/S

)

WQ
400
700
Linear (WQ)
Linear (400)
Linear (700)

y = -2.6602x + 22.293
R2 = 0.9626

y = -2.9635x + 22.341
R2 = 0.9715

y = -2.8819x + 22.557
R2 = 0.9756

0

4

8

12

16

20

24

0 1 2 3 4 5 6 7
log (s)

lo
g(

E)

WQ
400
700
Linear (WQ)
Linear (400)
Linear (700)

y = -2.5377x - 6.8356
R2 = 0.8939

y = -3.1536x - 9.1806
R2 = 0.9216

y = -2.8208x - 8.145
R2 = 0.9195

-16

-12

-8

-4

0

4

8

-6 -5 -4 -3 -2 -1 0 1
log (k)

lo
g(

P)

WQ

400

700

Linear (WQ)

Linear (400)

Linear (700)



 144

Table 6.2: Average fractal dimensions (D) and statistical parameters obtained for fractographic images for 
various aging temperatures. For each aging temperature 10 images are analysed to obtain the statistical 
parameters. 
 

 Temperature 25 350 400 450 500 550 600 650 675 700 
Stdev 0.038 0.069 0.067 0.028 0.059 0.073 0.046 0.087 0.060 0.045 
Max of Hfr 0.543 0.864 0.837 0.747 0.648 0.642 0.687 0.876 0.755 0.685 
Min of Hfr 0.434 0.611 0.617 0.645 0.449 0.412 0.534 0.577 0.549 0.538 
Coeff-of-var  7.700 9.668 9.334 4.026 11.291 14.152 7.778 13.050 9.037 7.353 

RS 

Dfr 2.503 2.276 2.281 2.306 2.480 2.484 2.406 2.349 2.348 2.374 
Stdev 0.031 0.049 0.031 0.026 0.049 0.042 0.040 0.042 0.037 0.026 
Max of Hfp 0.413 0.646 0.624 0.636 0.447 0.453 0.521 0.584 0.623 0.521 
Min of Hfp 0.309 0.477 0.541 0.535 0.294 0.305 0.388 0.436 0.515 0.428 
Coeff-of-var  8.941 8.653 5.225 4.410 13.574 11.460 9.207 8.254 6.666 5.519 

PSD 

Dfp 2.661 2.429 2.416 2.403 2.641 2.639 2.568 2.487 2.444 2.531 
Stdev 0.024 0.015 0.014 0.015 0.024 0.024 0.024 0.018 0.015 0.014 
Max of Hfw 0.410 0.496 0.491 0.487 0.425 0.436 0.466 0.478 0.492 0.431 
Min of of Hfw 0.333 0.446 0.446 0.442 0.358 0.361 0.394 0.431 0.444 0.390 
Coeff-of-var  6.210 3.204 2.869 3.296 6.173 6.125 5.615 4.070 3.209 3.399 

Wave-let 

Dfw 2.621 2.533 2.527 2.544 2.611 2.602 2.574 2.554 2.542 2.584 
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Figure 6.7: Fractal dimensions with respect to the aging temperatures by three methods. Error bars show 
the variability of fractal dimensions 
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From the error bars shown in Figure 6.7, it can be seen that R/S method generates larger errors 

than other methods. However the estimated fractal dimensions by R/S method have greater range 

which indicates that this method has better discrimination capability. Similar is the observation 

for the PSD analysis. However Wavelet analysis generates narrow data range, hence the 

discrimination capability is limited. Nevertheless the error bars show minimum variations by this 

method. 

 

6.2.3 Correlations between fractal dimensions and material properties 

Fractal dimension is used as the morphological characterizing parameter which quantifies 

surface roughness. Since surface roughness is one of the material characterising parameters 

which have correlation with the mechanical properties, a similar correlation may exist between 

fractal dimensions and material properties. Correlations between material properties and fractal 

dimensions computed from fractographic images of HSLA steel are presented in this section and 

mathematical models to determine particle spacing (average distance between two particles like 

precipitates, inclusions, etc. which are void initiating sites) and to estimate fractal fracture 

toughness have been developed and presented  
 

a) Particle spacing and ductile fracture toughness 

To implement fractal concept for characterizing fracture surface roughness, it is important to 

consider a characteristic length scale. For an object, it can be assumed that the characteristic 

length scale is the minimum ruler size or scale. Particle spacing is considered as the 

characteristic length scale of ductile fracture surfaces. During ductile fracture through void 

nucleation, coalescence and growth in high toughness materials like HSLA steel, microstructural 

constituents like inclusions, precipitates and other second phase particles play a critical role. 

They act as void nucleating sites, their shape and size control the initial void size, and their 

distribution determines the inter-void distance. The ductile fracture toughness model proposed 

by Thomson et al. [6] included a characteristic fracture distance which is a function of inter-

particular distance and the local fracture strain. Similarly, a ductile fracture model proposed by 

Garrison et al. [7] incorporated inter-particular distance as the scaling parameter for expressing 

crack tip opening displacement. The inter-particular distance is denoted as the particle spacing, 

where particles are the void initiating fine-scale microstructural constituents present in materials. 
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The generalised microstructural model of ductile fracture toughness [8] expresses that the 

fracture toughness parameter (J1c) is a function of the characteristic fracture distance (l0), local 

fracture strain (εf
*) and the yield stress (σy) as 

 0
* lJ fyIC εσ=   (6.2) 

While σy may be evaluated through a standard tensile tests, estimation of εf
* and l0, being local 

parameters, is somewhat difficult. Ritchie and Thompson [9] had shown that, for the stress 

modified strain control model for micro void coalescence, the characteristics distance (l0) can be 

approximated as the average spacing between two micro voids or more precisely the particle 

spacing, λ. Garrison [10] further refined the model by incorporating the micro mechanism of 

ductile fracture operative on the scale of material microstructure and proposed that l0 is the 

function of local fracture strain ε∗
f  and the particle spacing, λ, and may be written as 

 
2*

0 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

b
cl fε
λ   (6.3) 

where c and b are constants. On substitution of l0 into equation (6.2), it becomes 

 ( )3*
21 fyc b

cJ ελσ≈   (6.4) 

It is often found that the determination of λ through quantitative metallography  is difficult 

especially for HSLA steel or ultra high strength steel, as particles in their microstructures are of 

nano-size and widely dispersed [11,12]. In the following section, a model based on fractal 

mathematics has been developed for estimating λ. 

 

b) Development of an expression for λ based on the fractal concept 

During tensile deformation of a standard specimen, volume consistency of material is preserved 

till the onset of necking (progressive thinning of specimen on application of tensile load), after 

which it will be compromised through a reduction of density. In ductile materials, in which 

fracture takes place predominantly due to initiation, growth and coalescence of voids, volume is 

enhanced locally as the void volume fraction increases during the process of localized 

deformation or necking. To conserve mass, density is reduced to compensate for the post-

necking local volume enhancement. The constancy of mass throughout the tensile deformation, 

up to the onset of fracture, of a specimen can be written as 

 V0ρ0=Vfρf  (6.5) 



 147

where ρ0 is the average density that is constant till the point of initiation of necking (elastic 

changes are neglected), ρf is the average density at fracture, V0 is the initial volume and Vf is the 

volume at fracture, with all parameters being referred to localised occurrences. 

It is a contention here that the localised and globally non-conservative behaviour taking place 

through necking up to fracture cannot be adequately quantified in terms of dimensional sizing of 

physical entities using classical concept of Euclidean geometry. The use of fractal science and its 

geometrical interpretations are more suitable for representing the stochastic phenomena 

responsible for the processes of void initiation, growth and coalescence that lead to a chaotic 

fracture surface. 

On a ductile fracture surface, the uneven surface area (Af) is substantially larger than the 

projected surface area (Af0), and similarly it can be upheld that any true local length (Lf) at 

fracture is considerably larger than the projected length (Lf0). Using fractal concepts [13, 14], and 

assuming that the material has longitudinal and transverse homogeneity, an uneven fracture 

surface area can be defined by 

 ( ) ( ) *
10

*
10 . D

f
D

ff kAAA λη ==  (6.6) 

where η1, a dimensionless parameter greater than 1, is  the measurement yardstick in microscale 

and D* is the fractional part of the fractal dimension D. The parameter η1 can further be 

expressed as a function of λ, the particle spacing described earlier, as given in the second part of 

the equation. A similar definition is valid for linear dimensions when profile roughness or 

waviness is to be measured, and can be written as 

 ( ) ( ) *
20

*
20 . D

f
D

ff kLLL λη ==  (6.7) 

It may be noted that the scaling parameters k1 and k2 have units of per metre.  

Equation (6.5) can be rewritten as 
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Replacing 
0

0

L
L f  by (ef+1) and 

0

0

A
Af  by ( )q−1  in equation (6.8), where ef is the elongation and q 

is the reduction of area at fracture, and using the fractal scaling for fracture surface given in 

equation (6.6) and equation (6.7), the expression for λ can be obtained by rearranging as 
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Assuming that the decrease in density is a linear function of percent reduction [15], equation 

(6.9) can be rewritten as 
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 (6.10) 

In equation (6.10), k is a calibration constant with unit per meter which is of the order of the 

circular diameter of voids on the fracture surface. For isotropic materials, voids would normally 

be prolate spheroid in shape so that k1 and k2 are equal; in case of highly oriented 

microstructures, voids may take the shape of oblate spheroids, and k1 and k2 will correspond to 

the major and minor axes of the elliptical cross-section. The proportionality constant k3 is taken 

as 0.4 to achieve better fitting with the experimental results. It may be pointed out that these 

constants need to be calibrated for accurate predictions. 

 

c) Micro roughness, local strain and the fractal fracture toughness 

In equation (6.4), for the estimation of fracture toughness, the local fracture strain εf
* is required 

in addition to the material parameters σy and λ. A number of strategies have been developed for 

evaluating εf
*, including employing a value proportional to the strain at fracture under uniaxial 

tension [16], using finite element modelling to capture the strain at critical locations ahead of a 

crack [17] etc. Thompson and Ashby [18] have used the concept of micro roughness (M) of the 

fracture surface to derive an expression for estimating εf
* as 

 ⎟
⎟
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f
f V
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3

ln
3
1 2

*ε  (6.11) 

where 

 M =
w
h  (6.12) 

in which h is the depth and w is the width of voids on the fracture surface. Vf  is the volume 

fraction of the void nuclei and may be given by 

 3
0

3
0

6

D
xK

V v
f ∝  (6.13) 

where D0 is the initial diameter of the round tensile specimen, Kv is the number of voids covering 

the final diametric space of the specimen, x0 is the average initial diameter of the spherical void 
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nuclei. The value of x0 is assumed as 30nm. A detailed appraisal of the derivation of Vf is given 

in Appendix III. 

The roughness (Rs) of a fracture surface can be expressed using fractal geometry using [13, 14] 

 *
1

D
sR η=  (6.14) 

where 1η  is a non dimensional parameter greater than unity. It may be noted that such a 

definition of roughness is related to the size of the measurement yardstick, η . In this work, 

particle spacing λ has been used as the measurement yardstick or characteristic length in 

microscale in order to evolve the local fracture strain that is scale-consistent for calculation of 

fracture toughness. 

It may be noted that M in equation (6.11) is a linear or profile parameter, whereas Rs is a 

parameter related to surface. Using the correlation between the linear roughness parameter with 

the surface roughness parameter given by Underwood and Banerji [14], M can be rewritten as 

 ( )1
4

1 *
1 −+= DM ηπ   (6.15) 

Substituting M in equation (6.11) and using it in equation (6.4), a parameter proportional to the 

fracture toughness of the material is obtained. This parameter defined as the fractal fracture 

toughness, Jf,  that can be expressed as 
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In order to use the above equations, the yield stress σy is required to be evaluated through a 

tensile test, the fractal dimension of the fracture surface of the tensile specimen has to be 

obtained from fractographs, the particle spacing λ has to be estimated through equation (6.10) 

employing essentially tensile test parameters and the fractal dimension D, the surface micro 

roughness M has to be calculated using equation (6.15) where again D and λ has are the primary 

inputs, and Vf  has to computed from equation (6.13) using void size measurements carried out 

on fractographs. It may be pointed out, though, that a number of constants are involved in the 

process that may have to be assumed or calibrated.  
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d) Computation of λ 

For estimating λ, equation (6.10) has been used in which the tensile properties q, ef and D were 

substituted for the various aging temperatures. Variations of λ with the temperature of aging are 

shown in Figure 6.8 for the various methods of fractal determination used. The λ values are 

normalised using its value at the WQ condition. In the same plot, variations of the circular 

diameter of voids (similarly normalised), estimated from the tensile fracture surfaces by image 

analysis, are shown. It can be seen that the predicted particle spacing has good correlation with 

the circular diameter of voids, as may be expected.  

A minimum in λ at 450oC suggests the shortest inter-particle distance and signifies maximum 

number of void nuclei and smallest circular diameter of voids. TEM study [19-22] of the same 

material indicates formation of coherent precipitation of nano-scale copper in the neighbourhood 

of 500oC. These nano-size copper precipitates act as dislocation pinning sites as well as void 

nucleation sites and decrease the effective particle spacing. The positive correlation between 

particle spacing and the void size, as seen in Figure 6.8, can thus be rationalized.  

It is reported by previous investigators [23] that copper precipitates act as geometrical obstacles 

to dislocation motion. These precipitates are not the dislocation blockers but slow down the flow 

of dislocations. Impediment of dislocation motion strengthens the material by increasing the 

yield stress, keeping the elastic modulus unaffected. The increase of yield stress, Δσy=σy-σ0, 

based on the theory of Russell and Brown [24] is given as Δσ = 2.5Δτ, where Δτ depends 

inversely upon the distance between the precipitates, which is λ, the fractal based measurement 

yardstick, i.e. particle spacing. Decrease in λ leads to increasing of Δτ for which Δσy increases. 

Here σ0 is the yield stress of the unstrengthened state and σy is the yield strength after the 

strengthening by Δσy. Figure 6.9 shows the correlation between σy and the particle spacing, 

where σ0 is considered as the yield stress in the WQ state, when the copper is largely present in 

solid solution in a super saturated state. Within the aging temperature range of 350-500oC, the 

copper precipitates are in a coherent state, increasing in amount with increasing aging 

temperature.  



 151

0.0

0.4

0.8

1.2

1.6

0 200 400 600 800

Aging Temperature, oC

N
or

m
al

is
ed

 li
ne

ar
 d

im
en

si
on

, 
λ Particle spacing (RS)

Particle spacing (PSD)
Particle spacing (Wavelet)
Void diameter

  
Figure 6.8: Variations of normalised λ  with variation of aging temperatures. Correlation with the void 
diameter can be seen. 
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Figure 6.9: Correlation between normalised λ and yield stress (secondary y-axis). 
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Loss of coherency and the progressive coarsening of precipitations between 500-675oC increase 

the inter-particular distance, which allow greater dislocation mobility, and reduce the yield 

stress. It may be pointed out that in addition to the growth of incoherent copper precipitates, 

tempering of lath martensite is also responsible for the gradual decrease of yield stress on ageing 

at 500oC to around 675oC. Inverse correlation between λ and yield stress is maintained up to the 

aging temperature of 675oC. Above 675oC, although growth of incoherent copper precipitates 

continues, the increase of yield stress is due to the generation of new microstructural phase [22]. 

Since the aging temperature 675oC exceeds the A1 transformation temperature in localized 

regions depleted of austenite stabilizers, some of the ferrite is converted to reverted austenite, a 

part of which converts to martensite on cooling, resulting in the formation of new small 

martensite islands. These hard localized entities are responsible for increase of yield stress. Thus 

the inverse correlation between the increased yield stress and the particle spacing as proposed by 

Russell and Brown can not be maintained beyond an aging temperature of ~675oC. 

Table 6.3 presents the correlation coefficient (CoR) matrix, where the correlation coefficients 

between material properties and computed particle spacing are given in the first six columns. 

With particle spacing, there is a positive correlation with void size, percentage elongation (el) 

and percentage reduction of area (RA), whereas inverse correlation was found for hardness, yield 

strength and tensile strength (UTS). While void size and RA show good correlations, others 

show weak correlation except for the Wavelet analysis where the absolute correlation 

coefficients are above 0.7. It can be seen that the correlation coefficient between yield stress and 

particle spacing computed by fractal dimension determined by the R/S analysis is minimum (-

0.40); however plotting both of them with the aging temperatures, a correlation can be easily 

identified. Minimum particle spacing found at 450oC aging temperature correlates well with 

maximum yield stress at 500oC. Since for the HSLA steel, the maximum hardness can occur 

between 450-500 oC, the correlation between the particle spacing and yield stress can be 

accepted. 

 

e) Estimation of fractal fracture toughness 

To compute fractal fracture toughness using λ, equation (6.16) has been used, where the local 

fracture strain (εf
*) is calculated from the micro-roughness of the fracture surfaces as suggested 

by Garrison [14]. Figure 6.10 shows the comparison between normalized experimental fracture 

toughness with the same computed using equation (6.16). The correlation coefficients between 

these two parameters, listed in the last column in Table 6.3, are found to be good for all the 
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methods. The correlation would improve further if the proportionality constants, k and k3 in 

equation (6.10) are obtained rigorously through careful experimentation.  
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Figure 6.10: Correlation between fractal fracture toughness and experimental fracture toughness  

 

 

It was observed that the correlation coefficients (CoR) given in Table 6.3 are sensitive to the 

coefficient k3 in equation (6.10). Sensitivity analysis has been performed to asses the effect of k3 

on the correlation coefficients between the particle spacing and the void diameter, λvCoR , and 

the same between the fractal fracture toughness and experimental fracture toughness, JFJCoR . 

Figure 6.11 gives the variations of the correlation coefficients with the constant k3. To obtain an 

optimum value, the intersection of the two correlation curves has been considered. It may be 

noted that the points of intersection are 0.075, 0.13 and 0.175 for the Wavelet, PSD and RS 

methods respectively. Since the variation is not substantially large, an average value of 0.13 is 

accepted for all the three methods. All figures presented in this section have been generated 

using k3=0.13.  
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Table 6.3: Cross correlation matrix showing correlation coefficient (CoR) between particle spacing, λ , 
and material properties like hardness (Hv), yield strength (YS), ultimate tensile strength (UTS), 
percentage elongation (el), percentage reduction of area (RA), void diameter (V). CoRJFJ stands for 
correlation coefficient between experimental fracture toughness and fractal fracture toughness. 
  

Method λHvCoR  λYSCoR  λUTSCoR λelCoR λRACoR λvCoR  JFJCoR  

RS -0.427 -0.403 -0.539 0.430 0.603 0.619 0.898 
PSD -0.568 -0.516 -0.656 0.576 0.749 0.768 0.925 
Wavelet -0.817 -0.735 -0.823 0.776 0.949 0.943 0.875 
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Figure 6.11: Variations of correlation coefficients with the constant k3. 

 

6.3 Conclusions 

The fractal dimensions for fractographic images of HSLA steel aged at various temperatures 

after water quenching are reported in this chapter. R/S, PSD and Wavelet analyses are employed 

to compute fractal dimensions using high resolution SEM images. Following are the conclusions 

made: 

• An inverse correlation is found between fractal dimension and magnification. Beyond 2000 

magnification, the decreasing trend is persistent (D<2.5). Below 2000, except Wavelet 

method, others show anti-persistent behaviour (D>2.5). For unaltered images, the standard 
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deviation is the largest for PSD analysis, which is less than 0.194 and the coefficient of 

variance is less that 8%. The least standard deviation is obtained for the wavelet analysis 

which is 0.123.  

• Variation of locations (spatiality) has insignificant effect on fractal dimensions since the 

standard deviation is less than 0.04 and the co-efficient of variance about 1.3%.  

• Wavelet analysis is found to be the most robust method and efficient in terms of time and 

memory. The least efficient method is found to be the PSD method in terms of time. 

• Consistent trend in variations of fractal dimensions with aging temperatures is observed for 

the three methods, although the values are different for different methods. Systematic 

variations of fractal dimensions with aging temperatures, estimated from the fractographic 

images directly, can therefore be used for evaluation of materials. This finding is significant 

to material research, especially with regard to directly using fractographic images by SEM in 

preference to more cumbersome procedures. 

• While the R/S method is found to be the worst performing method in terms of variability, the 

estimated fractal dimensions with aging temperatures show better discrimination capability 

because of the wider range of variations. Similar is the observation for the PSD analysis. 

Wavelet analysis generates narrow data range; hence the discrimination capability is limited. 

Nevertheless the error bars shows minimum variations for the Wavelet analysis. 

• Using the concept of fractal mathematics, an expression for the particle spacing have been 

developed where tensile properties like percentage area reduction (q), elongation (ef) and the 

fractional part of the fractal dimension (D*) computed from the tensile fracture surface are 

used. The developed expression is given by 
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• The particle spacing λ has been shown to have good correlation with the circular diameter of 

voids estimated from the tensile fracture surface of HSLA steel aged at different 

temperatures. Inverse correlation between the particle spacing in the copper containing 

HSLA steel on aging and the increment in yield stress due to copper precipitation kinetics 

has been demonstrated. 
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• For computing fractal fracture toughness, a mathematical model is devised where the local 

fracture strain εf
* is calculated from the micro-roughness of the fracture surface and the 

characteristic length, l0 scaled by the particle spacing. The agreement between 

experimentally determined fracture toughness and the same predicted using the proposed 

model is found to be good. 

 

6.4 References 

1. Zhi-bin Liu, Bin Shib, Hilary I. Inyang and Yi Cai: Magnification effects on the 
interpretation of SEM images of expansive soils, Engineering Geology, 78, 89-94 (2005).  

2. XiaoWu Li, JiFeng Tian, Yan Kang and ZhongGuang Wang: Quantitative analysis of 
fracture surface by roughness and fractal method, Scripta Metallurgica et Materialia, 33, 
5, 803-809(1995). 

3. I. Dlouhy´and B. Strnadel: The effect of crack propagation mechanism on the fractal 
dimension of fracture surfaces in steels, Engineering Fracture Mechanics 75,  726–738 
(2008). 

4. References [30-41] of chapter-2 of this thesis. 

5. J. Stampfl, S. Scherer, M. Berchthaler, M. Gruber and O. Kolednik: Determination of the 
fracture toughness by automatic image processing, International Journal of Fracture, 
78,1,35-44(1996).  

6. A.W. Thompson: Modeling of local strains in ductile fracture, Metall Trans A, 18A, 
1877–1886(1987).  

7. W.M. Garrison and N. R. Moody: The influence of inclusion spacing and microstructure 
on the fracture toughness of the secondary hardening steel AF1410, Metall. Trans A, 
18,7,1257-1263(1987). 

8. R.O. Ritchie, W.L. Server, R A.Wullaert: Critical fracture stress and fracture strain 
models for the prediction of lower and upper shelf toughness in nuclear pressure vessel 
steels, Metall Trans A, 10A, 1557–1570(1979). 

9. R. O. Ritchie, A. W. Thompson: On macroscopic and microscopic analyses for crack 
initiation and crack growth toughness in ductile alloys, Metall Trans A, 16A:233–
248(1985). 

10. W. M. Garrison : A microstructurl interpretation of the fracture strain and characteristic 
fracture distance,  Scripta Matall., 18, 583-586(1984). 

11. J. R. Rice and M.A. Johnson: Inelastic behavior of solids, edited by Kannien MF, Adler 
WG, Rosenfield AR,  Jaffe RJ, 1970, McGraw-Hill, NY. 



 157

12. S.K. Das: Fracture behaviour of Copper strengthened HSLA steel, PhD Thesis, 2007, 
BESU, India. 

13. B. Mandelbrot: The fractal geometry of nature, 3rd Edition, 1983, W. H. Freeman and 
Company, New York. 

14. E. E. Underwood and K.Banerji: Fractal analysis of fracture surfaces. In: Fractography, 
1992, 12, ASM Handbook, ASM International, USA. 

15. G. Guiglionda and W.J. Poole: The role of damage on the deformation and fracture of Al-
Si eutectic alloys, Materials Science & Engineering A, 336, 159-169(2002). 

16. Sivaprasad S, Tarafder S, Ranganath VR, Ray KK. Materials Science and Engineering A 
2000; 284:195 

17. Kiran Solanki, S. R. Daniewicz and J. C. Newman:  Finite element analysis of plasticity-
induced fatigue crack closure: an overview, Engineering Fracture Mechanics, 71, 2, 149-
171(2004). 

18. A.W. Thompson and M.F. Ashby: Fracture surface micro-roughness,  Scripta Metal., 18, 
127-130(1884). 

19. S. K. Das, S. Sivaprasad, S. Das, S. Chatterjee and S. Tarafder: The effect of variation of 
microstructure on fracture mechanics parameters of HSLA-100 steel, Material Science 
and Enggineering A, 431, 68 – 79 (2006). 

20.  S. K. Das, N. Narasaiah, S. Sivaprasad, S. Chatterjee and S. Tarafder: Effect of aging on 
fatigue crack growth behabviour of Copper bearing HSLA-100 steel, Mat. Sci. and Tech., 
23, 177-182 (2007). 

21.  A. Ghosh and S. Chatterjee: Characterization of precipitates in an ultra low carbon Cu 
bearing high strength steel: A TEM study, Material Characterization, 55,  298– 
306(2005). 

22. S. K. Dhua, D. Mukerjee, D. S. Sarma: Influence of Tempering on the Microstructure and 
Mechanical Properties of HSLA-100 Steel Plates,  Met. Trans. 32A:2259-2269(2001). 

23. P. Kizler, D. Uhlmann, S. Schmauder: Linking nanoscale and macroscale: calculation of 
the change in crack growth resistance of steels with different states of Cu precipitation 
using a modification of stress-strain curves owing to dislocation theory, Neuclear 
Engineering and Design, 196,175-183(2000). 

24. K.C. Russell and  L.M. Brown: A dispersion dtrengthening model based on differing 
elastic moduli applied to the iron-copper system, Acta Met., 20, 969-974(1972). 

 



 



 

 

CHAPTER 7 

 

 

 

 

7.0 Fractal analysis of magnetic Barkhausen emission signals 
 7.1 MBE signal acquisition 160
 7.2 Standard magnetic properties from MBE signal  164
 7.3 Results and discussion 165
  7.3.1 Probability density function for the MBE signals 165
  7.3.2 Fractal analysis of MBE signals 169
 7.3 Conclusions 176
 7.4 References 177



 



 159

 

7 

FRACTAL ANALYSIS OF  

MAGNETIC BARKHAUSEN EMISSION SIGNALS 

 

This chapter presents results obtained by fractal analysis of Magnetic Barkhausen Emission 

(MBE) signals. The MBE signals are said to have fractal properties. The stochastic nature of the 

MBE signals is responsible for the fractal behaviour. Variations of magnetic properties take 

place when materials are exposed to operating environment or loading, causing micro or macro 

damages in materials which may or may not be visibly identifiable in their microstructures. 

However the MBE signals, acquired through non-destructive means, can identify these damages 

since the coercivity and magnetic permeability are altered owing to the magnetic domain wall 

(DW) movement. Similarly various microstructural constituents (non-magnetic or magnetic) 

have differential effect on the magnetic properties of the materials; MBE signals can determine 

these microstructural constituent parts. This chapter reports magnetic properties of the HSLA 

materials by MBE and Magnetic Hysteresis Loop (MHL) methods. Correlation between 

magnetic properties and the fractal dimensions computed from the MBE signal has been 
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investigated. In addition to the magnetic properties, attempt has been made to find out 

correlations between fractal dimensions of MBE signal with the mechanical properties of the 

same material. 

 

7.1 MBE signal acquisition 
Figure 7.1 shows the schematic diagram of the MBE setup. Samples are magnetized by a C-core 

magnet. The induced signal, acquired in milivolts, was picked up by the secondary coil. The 

induced pick up voltage which is proportional to the rate of change of flux, Φ& , depends on the 

applied field (H), magnetization of the sample (M) and the effective cross sectional area of the 

coil. The expression for Φ&  [1] is thus 

 )(0 MAHAN spickup
&&& +=Φ μ  (7.1) 

where N is the number of turns at the secondary coil, Apickup is the cross sectional area of the pick 

up coil, As is the cross sectional area of the specimen, 0μ  is the permeability of medium. In low 

alloy steel which is considered to be soft ferromagnetic material generating higher level of 

magnetization of the sample (M), and as the interest of the present study is the variation of 

microstructural changes, the first term in equation (7.1) should be insignificant compared to the 

rate of change of magnetization due to applied field i.e., MAHA spickup
&& <<0μ . To ensure that the 

value of HApickup
&

0μ  is insignificant, the pickup coil area is usually chosen very small compared 

to the total sample area and low frequency magnetic field is used to minimize applied magnetic 

field intensity. In addition, the sensitive orientation of the pick-up coil is chosen perpendicular to 

the applied field, i.e. a tangential magnetization in the sensed inspection region is ensured.  

Applied magnetizing field produces an opposite demagnetizing field having differential effect on 

the MBE signal, therefore, to keep the demagnetizing field constant, it is recommended that the 

signal be acquired at high coercivity point where the B-H curve is linear; here B is the flux 

density.  As the change of magnetization is maximum at coercive point, majority of MBE 

activity is found close to coercive field of the material. 

In a metallic system, the correlation between the rate of change of induced flux, Φ& , can also be 

written in terms of DW velocity [3], v as: 

 v
G

AAs ⎟
⎠
⎞

⎜
⎝
⎛=Φ

.
0

σ
μ& . (7.2) 
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In equation (7.2), σ  is the electrical conductivity, G is a constant value equal to 0.1357 [3], and 

A is the parameter measuring the strength of the local pinning interactions. 

 

 
Figure 7.1: Schematic diagram of MBE setup [2] 

 

The MBE signal amplitude i.e. the induced Barkhausen voltage, V, in the pick-up coil wound 

around a sample can be represented as 

 v
dt

dM
NAV js

s ∝−= 0μ  (7.3) 

where Mjs is the total Barkhausen activity in terms of the 'jump sum' which represents the 

discontinuous change of magnetization [4] and is a direct function of DW velocity, v. It is clear 

from equations (7.2) and (7.3) that as the strength of the local pinning interactions (A) increases, 

the DW velocity decreases and so does the RMS value of induced voltage for constant Φ& . 

To acquire MBE signal, the same specimens of water quenched HSLA steel aged at aging 

temperatures of 350oC, 400oC, 450oC, 500oC, 550oC, 600oC, 650oC, 675oC, 700oC were 

magnetized. The sinusoidal magnetizing field was of strength 4kA/m with frequency 40Hz.  

Notch filter was used to eliminate the magnetizing frequency and bandpass filter of 30-300 kHz 

was used to capture the MBE signal. The coercivity of the material was measured by magnetic 

hysteresis loop (MHL) technique using surface probe. Details of the hysteresis measurement 

have been reported elsewhere [5]. 
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Figure 7.2: MBE signals for (a) WQ sample and after heat-treatment at temperature (b) 500oC and  

    (c) 700oC. 

(a) 

(b

(c) 
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The time domain MBE signal is of burst type. Each signal contains 62500 data samples, 4 bursts 

and 12500 samples in each burst. Each hysteresis loop gives two bursts therefore each sample of 

the signals is acquired from two hysteresis loops.  The sampling frequency was 1 MHz. For each 

specimen, three sets of MBE signals were acquired. Figure 7.2 presents the MBE signals for 

three aging temperatures. A driving sinusoidal signal acts as a carrier wave for the high 

frequency MBN packets coming out from the sample. The following is the correlation between 

sampling frequency, total signal acquiring time, number of magnetic Barkhausen noise (MBN) 

packets and the frequency of the driving field 

 
N
fN

t
N

f sbb

22
==  (7.4) 

where the total number of data acquired is N, the sampling frequency is fs, the total signal 

acquiring time, 
sf

Nt = , the number of MBN packets is Nb and the frequency of the driving field 

is f.  

A careful examination of a MBN packet reveals that DW motion has three states in each of the 

positive and negative half cycles of the driving field- 

• Creation of DW, showing increasing MBN signal strength 

• Positive or negative saturation at peak 

• Annihilation of DW, showing decreasing MBN signal strength 

In between two packets, there is a saturated state of the material when no MBN are acquired. The 

MBN characteristics can be changed by altering the nature, frequency and amplitude of the 

driving magnetic field. For a Fe-Si-B amorphous alloy, it was found that steady state was 

reached when the magnitude of the driving magnetic field was more than 60Am-1. No 

appreciable difference in MBE signals can be observed if the magnitude is increased further. 

Frequency of the driving field has inverse correlation with the MBE events and a direct 

correlation with the root mean square value of the induced voltage (VRMS).  One can decrease the 

frequency of the driving field to acquire more MBN signals; however the amplitude of the signal 

will be low which may require higher amplification. Elimination of noise would be an important 

issue when low frequency driving field is used. 
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7.2 Standard magnetic properties from MBE signal  

Standard magnetic properties of a ferromagnetic material, considered in the present work, are the 

VRMS, pulse height distribution (PHD) and coercivity. While the VRMS and PHD are obtained from 

the MBE signal, coercivity is estimated from the hysteresis loop by the MHL method. For the 

HSLA materials, these properties are reported in the literature [5, 6], which are used for 

verification and validation of the fractal dimensions computed from the MBE signals. The 

magnetic properties like coercivity and VRMS are given in Table A.2 of Appendix I. The PHD has 

been computed and is reported in section 7.3 of this chapter. 

It was reported that the material became magnetically softer as the coercivity decreases since 

coercivity is the amount of resistance a material presents against magnetization. Figure 7.3 

shows the plot for the variations of coercivity and RMS voltage amplitude with the aging 

temperatures. 

 
 

Figure 7.3: Variations of coercivity and VRMS with the aging temperatures. 
 

During the initial stage of aging, coercivity decreases up to the aging temperature of 600oC when 

the material was magnetically soft. However, when the aging temperature was above 600oC, a 

rapid increase in coercivity with aging temperature was observed leading to magnetically harder 

material.  The peak VRMS found to be at 600oC as well, showing the maximum domain wall (DW) 

motion at this temperature. DW motion decreases as the material becomes magnetically hard.  
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7.3 Results and Discussion 

7.3.1 Probability density function for the MBE signal  

At time, t, the probability density function of the MBE signal, Pt(V), which is directly related to 

the domain wall velocity (v), and decays as power law [3,7,8] can be given as 

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈ −

0

exp
V
VVVPt

γ  (7.5) 

where V0 is the cut-off voltage. To compute the probability density, histogram of the VRMS signal 

within the minimum and maximum values was obtained for different bin sizes. In statistics a bin 

is the disjoint category of features of which the frequency of occurrence is discussed. To obtain 

PHD for the VRMS, five voltage categories have been considered as shown in Figure 7.4, which 

presents the probability density function of the MBE signal for aging temperature 350oC.   

It may be seen that depending upon the bin size, the peak value of the probability density 

function changes. However the γ  exponent, which signifies the extent of decay of the power law 

and obtained from the slope of the logarithmic plot of the Pt(V) vs V data,  was found to be 

weakly dependent on the bin size. To eliminate this weak dependence, the γ  exponent was 

computed by taking average from five bin sizes. Each MBE signal has four bursts; the γ  

exponent was computed from (i) each of these bursts and (ii) the average of these four bursts and 

(iii) full signal. . For cases (i) and (ii), signals acquired during magnetic saturations were 

disregarded. Variation of γ  exponent with aging temperatures is given in Figure 7.5. In the full 

signal, noise acquired during the magnetic saturation reduces the variation of the exponents with 

aging temperatures which can be seen in figure 7.5. However, ignoring values for the WQ state 

and rescaling the γ  exponent range, the variation of the γ  exponent for the total signal is found 

to be highly correlated when it was plotted against the hardness of the material, shown in 

Figure7.6. 

For reporting correlations between the γ  exponent and material properties, above mentioned two 

cases, (ii) and (iii), have been considered. The correlation coefficients (R) are given in Table 7.1 

where subscripts correspond to material properties like YS for yield strength, H for hardness, el 

for percentage elongation, Ji for the initiation fracture toughness, UTS for the ultimate tensile 

strength, c for the coercivity and V for the RMS voltage. Detailed experimental methods for 

evaluating the mechanical properties can be found elsewhere [9-11]. 
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Table 7.1:  Correlation coefficients(CoR) showing cross-correlation between γ  exponents and material 
properties*.  
 CoRYS CoRHv CoRel CoRJi CoRUTS CoRc CoRV 

Average 0.30 0.29 -0.12 -0.01 0.10 0.08 -0.46
Full signal 0.83 0.81 -0.91 -0.88 0.92 -0.72 0.51

* the subscripts are the YS for yield strength, Hv for hardness, el for percentage elongation, Ji for the 
initiation fracture toughness, UTS for the ultimate tensile strength, c for the coercivity and V for the 
VRMS. 

 

While the correlation coefficients for γ  exponents computed from the full signal are found to be 

excellent, the same is not true for the average γ  exponents. Nevertheless the average γ  

exponent has significance in terms of microstructural evolution due to the progressive aging of 

the HSLA steel. Lack of a unique trend (positive or negative) throughout the aging process can 

therefore be explained in the light of the microstructural evolution. 

For ferritic steel, mechanical hardness has a positive correlation with the magnetic hardness. 

However for the HSLA steel this correlation could not be explained using standard magnetic 

parameters like VRMS and coercivity. However, a direct correlation with the hardness was 

observed when γ exponent from the full signal is used as the magnetic characterizing parameter 

as shown in Figure 7.6.  

Higher the value of the γ exponent, faster is the decay of the probability distribution of the MBE 

voltage. This may take place when the distribution curve is skewed towards the right signifying 

maximum probability of the higher voltage amplitude. Higher voltage amplitude is due to 

increased DW velocity. This can happen when the strength of the local pinning interactions is 

reduced for constant rate of change of flux density (equation 7.2). Thus, an inverse correlation 

between γ  exponent and the strength of local pinning interactions is observed. From the WQ 

condition to aging upto 350oC, the γ  exponent reduces which indicates slow decay of the 

probability distribution curve and increased pinning interaction. . The DW motion is obstructed 

due to the mismatch strain fields between the coherent Cu-precipitates[12] formed due to aging 

and the Fe bcc lattice. However from 350oC to 500oC the pinning interaction reduces and the 

DW motion was increased gradually. It is usual that with aging, the material will have second 

phase microstructural constituents acting as barriers to the DW motion. However for HSLA 

steel, the DW motion was not impeded as there were coherent Cu precipitations in the matrix. 

The coherent Cu precipitates is of nanosize (~5nm-20nm)[13] which is less than the typical 

magnetic domain size of 30-50nm for which the DW motion could not be resisted. While the 
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DW motion was not impeded, dislocations were arrested or pinned by the nanosize Cu-

precipitations. Impediment of dislocations enhances the hardness and strength of the HSLA steel 

upto 500oC aging temperature. Beyond 500oC aging temperature, the Cu precipitations increase 

in size. Due to the coarsening of the Cu precipitates, strength of the DW pinning interactions 

increases, for which DW motion is reduced and the material becomes magnetically hard. 

Coarsening of Cu precipitations allows dislocations to glide pass the obstacles due to  which 

mechanical hardness and strength reduce. A new microstructural phase (martensite islands inside 

retained austenite) [6,9,10,11] is formed around 650oC for which the VRMS as well as the γ  

exponent show variations at higher aging temperatures. Thus, inverse correlation between 

magnetic hardness and mechanical hardness was found up to 600oC in HSLA steel. While the 

error bar remains reasonable at all aging temperature except at 675oC, the data scatter is possibly 

due to the formation of the martensetic island inside retained austenite. The microstructural 

homogeneity is not maintained due to formation of the composite microstructure, which is 

responsible for generating highly scattered signal. The variation of microstructual constituents 

due to aging of the HSLA steel is a dynamic process which could not be identified by the 

standard magnetic parameters like RMS voltage and coercivity parameters; however the power 

law decaying exponent did identify these changes and shows a positive correlation with the 

hardness variations.  
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Figure 7.4: The  probability density function for the MBE signal for samples aged at 350oC for different bin 

sizes (bin1=1 mV, bin 2=2 mV, bin 3 =3 mV, bin 4=4 mV and bin 5=5 mV).   



 168

2.5

3

3.5

4

4.5

0 200 400 600 800

Aging Temperature in oC

γ 
ex

po
ne

nt
First burst
Second burst
Third burst
Fourth burst
Average
All burst

 
Figure 7.5: Variations of γ  exponent with aging temperatures 
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Figure 7.6: Correlation of γ  exponent with the hardness of the HSLA steel. Full signal has been 

considered to estimate the γ  exponent. 
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Figure 7.7: Correlation of γ  exponent with the hardness of the HSLA steel. The four burst either 

separately or in all have been considered to estimate the γ  exponent. 
 

7.3.2 Fractal analysis of MBE signals 

It has been discussed in Chapter 3 that fractal dimension is correlated (D=γ  when Cantor fractal 

set was used to model Barkhausen Jump in Ref [3]) with the power law decaying exponent, γ ). 

In order to use the Cantor set the authors have normalized the DW velocity and the duration of a 

single burst (shown in equation 3.17), and assumed that the exponent will always remain within 

0<γ <1. The normalization of the DW velocity could not be implemented here, since the strength 

of pinning interactions (A in equation 7.2) was not available a priori. Nevertheless, it is expected 

that fractal dimensions computed from the MBE signals might have correlation with the γ  

exponent as well as with the mechanical and magnetic properties of materials. 

Tadic [14] explored the scaling behaviour of Barkhausen noise (BN) and found it to be non-

universal. When the degree of disorder is varied through non-equilibrium phase transition, the 

scaling exponent also varies. Based on extensive review of experimental and theoretical 

investigations on BN, it was concluded that the power spectrum decays with frequency (f) as 

~ φ−f , where 25 ≤≤ φ . The distribution of size, duration and energy associated with BN exhibit 

power law behaviour over a few decades with a cut-off. 
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The characteristics of BN signals and their power spectrums elucidated by previous researchers 

were classified into three groups by Plewka et al. [15]. They are 

• Group I: Noise in BN, treated as a stochastic element [15], can be modeled using desired 

parameters to get a known shape of the power spectra. 

• Group II: The evidence of 1/f power spectrum signifies self-organised criticality [16] in 

which BN was considered as a collective phenomenon of several degrees of freedom. An 

avalanche like propagation of domain wall takes place for a small perturbation due to a 

single Barkhausen jump. The effect of Barkhausen jump may decay gradually generating 

a point of self organized criticality in spatial as well as time domains. 

• Group III: Chaos in the BN pulses can be treated as deterministic rather than stochastic 

[17-19]. A single domain may show random disorder, however the presence of long 

range magnetostatic interactions orchestrated the random disorder in synchronized 

deterministic forms.  

Using correlation dimension, a method to represent self-similar fractal behaviour in signals, 

Plewka et al. [15] demonstrated that Barkhausen effect exhibits low dimensionality below 1.5 

and, therefore can be treated as a deterministic chaotic phenomenon. The authors used 

ferromagnetic amorphous ribbon to investigate the dimensionality. 

The Hurst exponent, H can express the power spectrum of the MBE signal as an exponent of the 

decaying function of frequency as 

 
βf

fP 1)( ∝
 (7.6) 

where β =2H+1 for fractional Brownian motion (fBm) and β  =2H-1 for fractional Gaussian 

noise (fGn) type signal [20-22] and P(f) is the power estimated by taking fast Fourier 

transformation (FFT) of the MBE signal. The fBm is a non-stationary, zero mean Gaussian 

function and fGn is the first derivative of the fBm function. Detail discussion on these fBm and 

fGn functions is given in Chapter 4. Considering MBE signal as of fBm type, the classification 

by Plewka et al. [15] in terms of fractal dimensions and Hurst exponents is given in Table 7.2. 

When the value of H is confined within 0 and 0.5, the signal is treated as stochastic and anti-

persistent. A change of behaviour is noticed when H becomes 0 and the power spectrum shows 

1/f noise characteristics which is termed as pink noise or a condition of self-organised criticality 

(SOC) [16].  Plewka elaborated that MBN signal is the effect of the DW motion owing to a small 
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perturbation to a single domain which creates an avalanche like propagation without any 

characteristic time or range constant. The local instability of the domain structure and size 

determine the size of the avalanche and the relaxation time of the system determines the lifetime 

of the avalanches.  When H is within 0.5 and 1, the signal can be treated as deterministic chaotic. 

It has low dimensionality and the behaviour is persistent. It can be pointed out that MBE signal 

is the response of a dynamical system which is excited by a given magnetizing force. The 

frequency of magnatization as well as sensitivity of the measurement device will have profound 

effect on the acquired MBE signal and thus to determine the signal characteristics it is imperative 

to mention the operating parameters and appropriate calibration mechanisms. 

Since MBE signal is the 1D time domain signal, rescaled range (R/S) analysis, power spectral 

density (PSD) and Wavelet methods suitable for 1D signal analysis have been employed. The 

algorithms for the implementation of these methods are given in Appendix-II. For each burst of 

the MBE signal, fractal dimensions were computed for various aging temperatures. Three sets of 

MBE signals for each aging temperature were captured from different locations of the specimen 

to ensure reliability of the results. To investigate the variations of fractal dimensions when the 

signal was fGn type, the signal was differentiated. The implementation of R/S method requires 

removal of average trend which essentially eliminates the low frequency components. 

Differentiation of the fBm type MBE signal keeps the high frequency components again and 

leaves the very high frequency fractional Gaussian noise. Figures 7.8 (a) and (b) show the 

variations of fractal dimensions with aging temperatures before and after differentiation of the 

MBE signals. It may be noted that there is a low dimensionality in the MBE signal signifying 

persistent behaviour. However for the differentiated MBE signal (fGn type), high dimensionality 

is noted in fractal dimensions. Since the differentiated MBE signal contains high frequency 

components, the signal is expected to have stochastic nature which conforms to the high 

dimensionality characteristic of the signal. 

Table 7.2: Classification of MBE signal by fractal dimensions 

Group β  H D BN type 
I 1< β <2 0<H<0.5 2>D>1.5 Stochastic i.e. high dimensionality 
II 1 0 2 Pink noise signifying self-organised criticality ( SOC)
III 2< β <3 0.5<H<1 1.5>D>1 Deterministic chaotic i.e. low dimensionality 
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Figure 7.8: Fractal dimensions by RS method.using (a) Raw MBE signal i.e. fBm type and  

    (b) Differentiated to keep high frequency components i.e. fGn type. 
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Table 7.3 presents the correlation coefficients between the fractal dimensions and various 

magnetic and mechanical properties of the HSLA steels. The correlations are found to be good 

between the average fBm type signal and the magnetic properties of the materials. However with 

mechanical properties, the correlation is found to be weak above 0.5 for the average fBm type 

signal for mechanical properties. For the γ  exponent, the correlation is found to be less than 0.5. 

While the fractal dimension has positive correlation with the hardness, UTS, YS and VRMS, it has 

negative correlations with the percentage elongation (el) and fracture toughness (Ji). The 

correlations found here is logical since typically hardness of a material is positively correlated 

with the UTS, YS and negatively correlated with el and Ji. Fractal dimensions having opposite 

correlation with the two magnetic properties reported here indicate that these properties have 

negative correlation with each other.  This agrees with the general trend of negative correlation 

between coercivity and VRMS. Fractal dimensions obtained from the fGn type signal show poor 

correlations with the magnetic and mechanical properties. However they show good correlation 

with the γ  exponent. 

 
Table 7.3: Correlation coefficients(CoR) showing cross-correlation between fractal dimensions and 

material properties*. 
   CoRYS CoRHv CoRel CoRJi CoRUTS CoRc CoRV CoRg

fBm RS 0.50 0.57 -0.51 -0.55 0.65 -0.92 0.82 -0.43Average 
fGn RS-D 0.21 0.27 -0.52 -0.41 0.59 -0.49 -0.01 0.77
fBm RS 0.08 0.17 -0.51 -0.57 0.47 -0.76 0.58 -0.27Full 
fGn RS-D 0.17 0.29 -0.49 -0.48 0.49 -0.60 0.12 0.81

* the subscripts are the YS for yield strength, Hv for hardness, el for percentage elongation, Ji for the 
initiation fracture toughness, UTS for the ultimate tensile strength, c for the Coercivity, V for the VRMS 
and g for gamma exponent. 

 

Figures 7.9 (a) and (b) show the plots for the variations of fractal dimensions by PSD method in 

two frequency ranges: 30 kHz to 500kHz and 30kHz-300kHz respectively. The usual range of 

MBE signal is 30kHz-300kHz which generates fractal dimensions more than the mathematical 

limit of Euclidean dimension 2 for 1D signal. Since the aim is to investigate the variations of the 

fractal dimensions with the aging temperatures and to find out the suitability of this parameter to 

trace the microstructural evolution in materials, the mathematical limitation has been ignored and 

the results have been presented for completeness. The range of computed fractal dimensions 

(difference between maximum at 550oC and minimum at 450oC in Figure 7.9 (b) ) corresponding 

to the 30kHz-300kHz frequency is found to be greater than the same for the 30kHz-500kHz 

frequency. The reduction of data range is the effect of the high frequency noise. Variations of 

fractal dimensions by Wavelet method with the aging temperatures are shown in Figures 7.9 (c) 
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and (d). Raw MBE signal was used for carrying out Wavelet analysis and the results are shown 

in Figure 7.9(c), the same signal was filtered to remove the average trend in order to retain the 

high frequency components and the results are presented in Figure 7.9 (d). High frequency 

components increase fractal dimensions and insert noise in the system. Removal of average trend 

(low frequency part), enhances effect of high frequency noise; thus higher fractal dimension is 

obtained for the case presented in Figure 7.9 (d).  Like PSD method, inflection at 450oC is found 

to be interesting.  

It can be seen that the error is significantly high in the results in addition to the fact that the range 

of the estimated fractal dimensions is very small. All the three methods estimated fractal 

dimensions more than 1.5. This signifies that the signals are anti-persistent as the Hurst exponent 

is less than 0.5. The anti-persistent fractal behaviour is expected since Barkhausen Jumps have 

high frequency harmonic characteristics. To verify the correlations between fractal dimensions 

obtained by the PSD and Wavelet methods and the material properties, the correlation 

coefficients are presented in table 7.4. 

In Table 7.4, ‘Av’ and ‘Full’ postfixed are used to indicate average value of four bursts 

individually and the full signal respectively.  The correlation coefficients show no correlation 

between the fractal dimensions by PSD and Wavelet methods and the material properties. 

Nevertheless the data shows certain trend especially the inflection around the aging temperature 

of 450oC-500oC indicate embrittlement behaviour of the material due to high hardness and 

strength properties. The investigation clearly shows that fractal dimensions computed from the 

MBE signals can not correlate microstructural variations leading to the variations of mechanical 

and magnetic properties of the HSLA steel. The limitation is due to the fact that the MBE signals 

were acquired at high magnetizing frequency (40Hz). To carry out fractal dimensional analysis 

the magnetizing frequency should be about 10Hz. The slow response of the DW motion due to 

low magnetizing fields can show fractal nature which may correlate the material properties. In 

addition, HSLA steel is a multiphase polycrystalline material and the magnetic response is 

highly complicated. The sinusoidal nature of the fractal dimensions for different aging shown in 

Figures 7.9 (a) to (d) show the extent of complexity in the signals.  
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Figure 7.9: Variations of fractal dimensions with aging temperatures by a) PSD method with frequency 
range was 30 kHz to 500 kHz b). PSD method with frequency range was 30 kHz to 300 kHz, c) Wavelet 
method and d) Wavelet method removing the average trend. 

 

 

Table 7.4: Correlation coefficients (CoR) for the cross-correlation between fractal dimensions and 
material properties for the PSD and Wavelet methods. 

 CoRYS CoRHv CoRel CoRJi CoRUTS CoRc CoRV CoRg 
PSD-Av 0.16 0.08 -0.13 -0.34 0.33 -0.31 0.69 -0.45
PSD-Full -0.07 -0.28 0.01 -0.21 0.13 -0.12 0.34 -0.37
Wave-Av 0.11 -0.02 0.13 0.12 0.01 0.19 -0.22 -0.86
Wave-Full 0.32 0.09 0.01 0.04 0.12 0.38 -0.57 -0.46

* the subscripts are the YS for yield strength, Hv for hardness, el for percentage elongation, Ji for the 
initiation fracture toughness, UTS for the ultimate tensile strength, c for the Coercivity, V for the VRMS and 
g for gamma exponent. 
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7.4 Conclusions 

• MBE signal is a burst type stochastic signal. Each burst contains magnetic noise which 

corresponds to the microstructural resistance against the DW motion.  

• Probability density function of the MBE signal indicates an exponentially varying power law 

function. The power law exponent is found to be a suitable parameter to characterize 

microstructural evolution of the HSLA steel. The correlation coefficients between theγ  

exponents computed using the full signal and the mechanical and magnetic properties are 

found to be excellent. 

• The γ  exponents give the information on the strength of the local pinning field due to the 

microstructural evaluation during the progressive aging of the HSLA steel. An inverse 

correlation between γ  exponent and the strength of local pinning interactions is observed for 

this steel. The reduced strength of local DW pinning interactions increases the VRMS which 

also increases the DW velocity. The DW motion is later obstructed due to the tensile residual 

stresses created by the mismatch strain fields between the incoherent Cu-precipitates formed 

due to aging effect and the Fe bcc lattice.  Microstructural constituent like coherent Cu-

precipitations allow DW motion but impede dislocation motion up to the aging temperature 

around 500oC for which γ  exponent increases. Coarsening of Cu-precipitations is 

responsible for magnetic hardening as well as mechanical softening beyond 500oC and 

explains the anomalous behaviour of the HSLA steel throughout the aging process. 

• The γ  exponent can identify the new microstructural phase (martensite islands inside 

retained austenite) created around 650oC producing a composite microstructure which 

conforms to the high strength behaviour of the material. 

• Fractal dimensional analysis of MBE signals generates fractal dimensions more than 1.5. 

This signifies that the MBE signal is anti-persistent as the Hurst exponent is less than 0.5. 

The anti-persistent fractal behaviour is expected since Barkhausen Jumps (BJ) have high 

frequency harmonic characteristics. Thus BJ activity at high magnetizing field rate for the 

HSLA material is found to be stochastic. 

• Amongst the RS, PSD and Wavelet analysis methods, RS is found to be the most suitable 

method for computing fractal dimensions of the MBE signal. The cross-correlation between 

the fractal dimensions computed by the RS method and magnetic properties of HSLA steel is 
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found to be good and mechanical properties have weak correlation with the fractal 

dimension. 

• The correlation coefficients show no correlation between the fractal dimensions by PSD and 

Wavelet methods and the material properties. Nevertheless the data shows certain trend 

especially the inflection around the aging temperature of 450oC-500oC indicate embrittlement 

behaviour of the material due to high hardness and strength properties. Perhaps better 

correlation between fractal dimension of the MBE signal for this material and material 

properties may be obtained if low magnetizing frequency (less than 10Hz) is used for 

applying the magnetic field. 
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To see a world in a grain of sand, 

And a heaven in a wild flower, 

Hold infinity in the palm of your hand, 

And eternity in an hour. 

“Auguries of Innocence” by William Blake 
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8 
CONCLUSIONS 

 

The present work was mainly aimed at investigating scale-invariant fractal properties of 

microstructural and fractographic images for evaluation of materials. Fractal behaviour of time 

domain MBE signals was also considered in order to assess their suitability as a non-destructive 

evaluation methodology. Low-carbon, copper-strengthened high strength low alloy (HSLA) 

steel, water quenched (WQ) and aged at various temperatures to exihibit a wide variation of 

material properties, was employed in the investigation. Amongst a wide range of methods for the 

determination of fractal dimension, three techniques, namely R/S, PSD and Wavelet, were 

selected for implementation since they are suitable for analysis of both images and signals. The 

endeavour was to compute fractal dimensions, D, or the Hurst exponent, H, which are quantifiers 

of complexity in signals and images. A systematic procedure for testing the codes developed for 

fractal analysis was employed in which synthetic 1D signals based on Weirestrauss cosine 

function (WCF) and images based on fractional Brownian motion (fBm) of various H values 

were used as inputs. It was shown that PSD and Wavelet analysis computed fractal dimensions 

for the fBm type signals correctly; however the R/S method gave equivalent fractal dimensions if 
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fractional Gaussian noise (fGn) signals and images, which are the gradient of the fBm type, were 

used. For low values of H, errors are found to be maximum since high frequency components 

(small length scale) are present in the signals, which make the signals too complex and anti-

persistent. A set of calibration equations have been developed in this investigation that 

transforms H values computed from natural signals and images to the same from equivalent fBm 

signals. 

To investigate the invariance property of fractal dimension of real microstructural images, it was 

necessary to find correlation between fractal dimension and magnification of the target image. 

An inverse correlation between fractal dimension and magnification, as reported in this work, 

indicates that universal values of fractal dimension for microstructural and fractographic images 

are not possible. As the magnification increases, the field of view decreases with increase in 

details. A smaller field of view reduces the global information content, and therefore the fractal 

dimension reduces. At lower range of magnification, since micro details are not captured, the 

image contains insufficient information for which fractal dimension reduces. Thus 

microstructural and fractographic images are found to be multi-fractals and it was important to 

find out the appropriate length scales within which they remain self-similar and/or self-affine 

fractals. Analysis at three different magnifications revealed that radially averaged power spectra 

of microstructural images have bilinear characteristics which distinguish two different length 

scales: true fractal behaviour is exhibited for length scales less than 1μm, and “monoscale” 

fractal behaviour is demonstrated for length scales above 1μm. It was interesting to find that the 

characteristic length scale of ~1 μm corresponds to the width of lath martensites, one of the 

principle constituents of the microstructure of HSLA steel, which is thus of fractal nature. 

In addition to the effect of magnifications on fractal dimensions, effects of spatial locations at 

which images were captured and the pre-processing to which images were subjected were 

studied. The effect of spatial location on fractal dimensions is found to be insignificant for 

microstructural and fractographic images of magnification greater than 1000. This indicates that 

the images are homogeneous and represent similar statistical similarities. Preprocessing of 

images changes fractal dimensions. For the binarized image, the computed fractal dimensions are 

the largest followed by that of histogram equalized images. The unprocessed image generates 

lowest fractal dimensions. The variations of fractal dimensions remain the same in unaltered as 

well as in preprocessed images for systematic variation of microstructural conditions. 
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With regard to fractal analysis methods and the types of images used for the analysis, maximum 

data scatter was found for the PSD analysis. Secondary electron (SE) images show more data 

scatter than back-scattered electron (BE) images. This indicates that noise level is higher in the 

former than the latter, which agrees with the general principle of electron imaging. PSD and R/S 

methods generate fractal dimensions which can clearly distinguish the morphological changes in 

microstructural as well as in fractographic images at various ageing temperatures. However 

Wavelet analysis has the poorest discrimination capability since the fractal dimension is found to 

be nearly invariant throughout the aging process. 

Variations of fractal dimensions computed from microstructural images show good correlations 

with mechanical properties of the systematically varied microstructural conditions. While the 

correlations are found to be negative for hardness and strength properties, they are positive for 

ductility properties like percentage elongation and reduction of area. Increasing hardness 

signifies solid solution strengthening (through nano-size coherent copper precipitates coming out 

of the solid solution of steel) and an increase in the volume fraction of coherent copper 

precipitates. Up to aging at 550oC, there is a decreasing trend of fractal dimensions, which 

signifies the gradual improvement of persistent behaviour in images. Persistent behaviour in a 

structural sense is smoothening or ordering that can be ascribed to the increasing nano-size 

coherent copper precipitation occurring between 350oC-550oC. An interesting finding of the 

work is that the morphological changes occurring at the nano-scale level can be identified by 

fractal analysis of images captured at a relatively macro scale, even though conventional image 

analysis is unable to record any changes. 

Systematic variations of fractal dimensions with ageing temperatures, estimated from the 

fractographic images directly, can be used for evaluation of mechanical properties of materials. 

Consistent trends in variation of fractal dimensions with ageing temperatures are obtained by the 

three methods of analysis employed, although the absolute values are different for different 

methods. This consistency of trend is significant, especially with regard to directly using 

fractographic images of SEM for fractal analysis, instead of the tedious procedure of the popular 

slit-island method of fractal analysis in which a set of images obtained by progressively 

polishing fractured specimen have to be used. 

Using the concept of fractal mathematics, an expression for the particle spacing (average 

distance between two neighbouring void nucleating sites) has been developed, in which tensile 

properties like percentage area reduction (q), elongation (ef) and the fractional part of the fractal 
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dimension (D*) computed from the tensile fracture surface are used. The developed expression, 

correlating morphological characteristics of the fractographic image with the material structural 

characteristics, is given by 
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The particle spacing λ was shown to have good correlation with the circular diameter of voids 

estimated from tensile fracture surfaces of HSLA steel that has been aged at various 

temperatures. Inverse correlation between λ and the increment in yield stress due to copper 

precipitation kinetics has been demonstrated. A model for estimating fracture toughness, named 

as fractal fracture toughness, has been developed in this work, based on the effectiveness of 

fractal dimensions in characterizing fracture surfaces. For computing fractal fracture toughness, 
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The agreement between experimentally determined fracture toughness and the same predicted 

using the proposed model has endorsed the applicability of fractals for evaluation of materials. 

To develop a non-destructive protocol for evaluation of material, MBE signals were used as 1D 

time series signals. To estimate the variation of local pinning fields originating from the presence 

of microstructural constituents responsible for impediment of domain wall (DW) motion, the 

power law exponents of the decaying Barkhausen spectra were estimated from the MBE signals 

captured from specimens of HSLA steel at variously aged conditions. An inverse correlation 

between γ  exponent and the strength of local pinning interactions was observed for this steel. 

The reduced strength of local DW pinning interactions increases the MBE voltage which also 

increases the DW velocity. Fractal dimensional analysis of MBE signals showed that the MBE 

signal is anti-persistent in nature since the Hurst exponent is less than 0.5. Anti-persistent fractal 

behaviour is expected due to the fact that Barkhausen Jumps (BJ) have high frequency harmonic 

characteristics that lead to BJ activity at high magnetizing field rate being stochastic for the 
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HSLA material. The cross-correlation between fractal dimensions computed by the R/S method 

and magnetic properties of the steel is found to be high, while mechanical properties have weak 

correlations. Nevertheless, the data shows certain trends, especially the inflection at the ageing 

temperature of 450oC-500oC, which indicates the manifestation of embrittlement that is 

supported by mechanical behaviour of the material. 

 

8.1 Future direction of work 
There are a number of aspects remaining to be investigated to get a complete understanding of 

fractal behaviour of microstructural and fractographic images, and its application for the 

evaluation of materials. It is required to know how fractal dimensions vary with various 

operating parameters (time and concentration of etchants) for metallographic sample preparation. 

Classification of fractal dimensions needs to be attempted, focusing on the development of 

various constituent phases in case of microstructural images and on fracture mechanisms for 

fractographic images. Fractal dimensions, obtained by three methods, show similar trend and 

ensure that the parameter is quite relevant, especially when correlations with material properties 

have been demonstrated. However, it would be appropriate to obtain fractal dimensions by 

conventional area-parameters correlations, and validate the results presented in this work. 

Variations of fractal dimensions for two simple image pre-processing techniques have been 

reported. Pre-processing using filters and its effect on fractal dimension could have been an 

additional direction of research. 

For the analysis of MBE signals, effects of the frequency of magnetization on fractal dimensions 

need to be evaluated for establishing a non destructive protocol for quantifying microstructural 

damages in materials. 

Finally, it is clear that for the use of fractal based analysis for the evaluation of materials, careful 

calibrations are required to develop a technological tool for real life application. This has to be 

carried out for specific material systems, with appropriate consideration of statistical variability 

and personal subjectivity. Such an endeavour is yet to be undertaken. 

 

 

 



 184

 



 

 

APPENDICES 

 

 

 

 

A Appendices 
 A1 HSLA steel and its properties 185
 A2 Algorithms for fractal analysis  188
 A3 Expression for void volume fraction 193



 



 185

APPENDIX-1: HSLA steel and its properties 

A1.1 About HSLA steel  

High strength steel was first developed in the 1960's for naval applications. Low carbon, Cu 

containing high strength low alloy (HSLA) steels are emerging materials for naval and other 

structural applications due to their good combination of strength and toughness and excellent 

weldability. The improved weldabilty is achieved through lower concentrations of carbon. The 

copper addition provides the required strength through aging. These steels can provide different 

combinations of strength and toughness in a wide range of plate thickness by different heat 

treatments. So appropriate selection of heat treatment is possible to obtain the best strength-

toughness combination in these steels.  

 

A1.2 Chemical composition  

Table-A.1: Chemical composition of HSLA steels in weight percent  

Steel  C  Mn  P  S  N  Si  Cr Mo Ti  V  Nb  Ni  Cu  

HSLA-
100  

0.04 0.90  0.01  0.005 0.015 0.25 0.6 0.60 0.02 0.03  0.03  3.50 1.60  

 

A1.3 Aging or heat treatment  
In order to obtain a homogeneous microstructure, the specimens of HSLA steel were 

austenetised for 1h at 910oC and then water quenched (WQ). “Austenitizing is the process of 

holding the ductile iron casting like HSLA steel above the critical temperature for a sufficient 

period of time to ensure that the matrix is fully transformed to austenite”[1]. This is like 

refreshing the microstructure and then new desired microstructures are developed through 

tempering. In metallurgy “Quenching and Tempering are the standard heat treatments applied to 

ductile iron castings requiring maximum strength and wear resistance”[1]. To obtain different 

strength-toughness combination, the WQ specimens were tempered at 350oC to 700oC at an 

interval of 50oC with an additional temperature of 675oC. Tempering gives age hardening 

treatment to the material and alters the microstructural morphology progressively.  Figure A.1 

shows the heat-treatment diagram. 
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Figure A.1: Heat-treatment diagram of HSLA steel 

 

A1.4 Magnetic properties  
 

The magnetic hysteresis loop (MHL) and magnetic Backhouse (MBE) emission were measured 

using a surface probe for different heat-treated materials.  Coercivity is estimated from the MHL 

and root mean square value of the induced voltage (VRMS) is estimated from MBE measurement 

shown in Table A.2. 

Table A.2: Magnetic properties of the HSLA steels 

Aging 
Temp(oC) 350 400 450 500 550 600 650 675 700
Coercivity 4.8703 4.6475 4.5693 4.5281 4.4724 4.4167 4.6952 5.1488 5.2602
VRMS 26.8 27.5 27.7 31.37 36.7 40.4 21.83 24.93 15.37

 
 



 187

A1.5 Mechanical and fracture properties  
The mechanical and fracture properties of HSLA steels are dependent on the chemistry of 

materials, process parameters, rolling condition, aging or heat-treated condition etc. that 

influences the resultant microstructure. Round tensile specimens of 5 mm diameter and 25 mm 

gauge length, tempered at different temperatures, were used for evaluating the tensile properties 

as per ASTM standard E-8M using a 100kN Instron servohydraulic testing system.  

For experimental determination of initiation fracture toughness, Ji, three-point bend (TPB) 

specimen machined as per ASTM standard E-1820. All specimens were pre-cracked to a/W = 

0.5 in a EMR machine at 75 Hz frequency. Tests were conducted in a 100 kN Instron servo 

hydraulic testing system equipped with a digital controller that was interfaced to a computer for 

test control and data acquisition. A displacement rate of 3x10
-3 

mm/s was used for applying loads 

on the specimen. A 10 mm COD gauge was used for Load-Line-Displacement (LLD). Software 

was used for test control and data acquisition and the raw data was analysed off-line to get the 

load–load line displacement (P-LLD) and J-R curve as per ASTM E-1820. Ji was computed from 

the J-R curve. Table A.3 presents the mechanical and fracture properties of this steel.  

 
Table-A.3: Mechanical properties of the WQ and aged HSLA steel  

 
Heat-treated 
condition /  

Aging 
temperature 

Hardness 
(Hv) 

E 
(GPa) 

YS 
(MPa) 

UTS 
(MPa) 

% El %RA Ji 
(kJ/m2) 

WQ 296 195.0 818 1004 9.38 69.54 299 

350
o
C 300 203.3 886 1056 8.49 67.88 231 

400
o
C 321 191.5 957 1076 7.70 62.56 69 

450
o
C 331 195.7 968 1098 6.46 61.26 207 

500
o
C 343 200.0 1034 1121 5.9 61.75 22 

550
o
C 312 192.7 927 1011 14.69 65.09 500 

600
o
C 271 187.7 698 955 15.92 69.63 493 

650
o
C 263 192.5 643 934 17.71 70.11 725 

675
o
C 252 175.4 640 921 19.84 73.27 649 

700
o
C 280 203.6 831 983 19.12 73.90 896 
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APPENDIX-2: Algorithms for fractal analysis  

A2.1: Rescaled range analysis  

a) 1D implementation  

Input: 1D signal 

Output: D 

• Initiate level, n =1 

• Input 1D signal Y(t) with N=length(Y(t)) 

• Divide the signal into T=2(n-1) parts 

• Each part has signal length=N/T 

• Compute a set of mean value { } TkkYYY <<021 ,..,,  

• Compute the accumulated departure from the mean 
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• Compute range R(j) 
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0
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• Compute standard deviation S(j) 
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• Compute R/S (n,j) value 

),(
),(),(/

jnS
jnRjnSR =  

• Compute the average R/S value  

∑
=

=
T

j
jnSR

T
nSR

1
),(/1)(/  

• Go to the next level, n=n+1 

• Compute log (R/S(n)) and log(n) and get the slope of the linear fit of the log-log plot. The 

slope is the Hurst exponent Hr as given in the power law correlation  

rH
ThresholdTN

CnnSR =
>/

)(/  as ∞→n  

• Compute D=2-Hr 
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b) 2D implementation  

Input: Intensity image 

Output: D 

• Initiate level, n =1 

• Input image f(x,y) with M=Image width and N=Image height 

• Divide the signal into T=4(n-1) parts 

• Each part has image dimension, Μ1=M/2(n-1) and Ν1=N/2(n-1) 

• Compute a set of mean value { } TkkYYY <<021 ,..,,  

• Compute the accumulated departure from the mean 
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• Compute range R(j) 
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• Compute standard deviation S(j) 
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• Compute R/S (n,k) value 
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knS
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• Compute the average R/S value  

∑
=

=
T

k
knSR

T
nSR

1
),(/1)(/  

• Go to the next level, n=n+1 

• Compute log (R/S(n)) and log(n) and get the slope of the linear fit of the log-log plot. The 

slope is the Hurst exponent Hr as given in the power law correlation  

rH
ThresholdTN

CnnSR =
>/

)(/  as ∞→n  

• Compute D=3-Hr 
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A2.2: PSD analysis  

a) 1D implementation  

Input: 1D signal 

Output: D 

• Read the signal X(t) 

• Crop the signal and get the length N 

• Supply sampling frequency, fs 

• Do fast Fourier transformation of the signal 

Xk=fft(X(1:N), fs); 
• Compute power spectral density  and corresponding frequency by 

P = Xk.* conj(Xk) / N; 
f = fs*(1: fs)/N; 

 
•  The frequency range obtained is fs/2 

• Get log P(f) vs log(f) plot and compute the slope, β using the following correlation 

βf
fP 1)( ∝  

• Compute 
2

1−
=
βH  and D=2-H 

 

3.2.2 b) 2D implementation  

Input: Intensity image 

Output: D 

• Read image file f(i,j) 

• Crop image to remove text from the image and get the final image dimensions N=Image 

width and N=Image height 

• Compute FFT of the image 

• Do FFT shift to bring the spectrum at the centre 

• Calculate power spectral density 

NN

vuG
vuP

*

),(
),(

2

=  

• Convert the Cartesian co-ordinate system to Polar coordinate system for the frequency 

components, f and θ 
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( )
u
vwhere

vuf

1

22

tan

int

−=

+=

θ
 

• Compute average power for f=1 to N/4 

⎟
⎠
⎞⎜

⎝
⎛ +=

= 22int
),()(

vuf
vuPfP  

• Get log P(f) vs log(f) plot and compute the slope, β using the following correlation 

βf
fP 1)( ∝  

• Compute 
2

2−
=
βH  and D=3-H 

 

A2.3: Discrete wavelet analysis 

a) 1D implementation  

Type: Haar (db1), Daubachi (db2, db4,db8) 

Input: 1D signal 

Output: D 

 

• Read the signal X(t) 

• Do wavelet decomposition using 
[C,L] = wavedec(X,log(double(N))/log(2),'Type'); 

where C is the co-efficient vector and L is the level vector. 
• Get detailed coefficient vector Cd for all levels using 

Cd = detcoef(C,L,'cells'); 
• For each level compute power by taking summation of Cd vector using 

Ed(k) = sum(Cd{k}.^2)/(2^(M+1-k)); 

where k is the level and  M = length(L)-2; 

• Get log (Ed(k) vs log(k) plot and compute the slope, β using the following correlation 

βk
kEd 1)( ∝  

• Compute 
2

1−
=
βH  and D=2-H 
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b) 2D implementation  

Type: Haar (db1), Daubachi (db2, db4,db8) 

Input: 1D signal 

Output: D 

• Read the image I(i,j)  

• Get length of the image L=length(I); 

• Do wavelet decomposition using 
[C,L] = wavedec2(B1,log(double(N))/log(2),'Type'); 

where C is the co-efficient vector and L is the level vector. 
• Get detailed coefficient matrix in horizontal, vertical and diagonal directions, 

[chd2,cvd2,cdd2], for each level, k using 
[chd2,cvd2,cdd2] = detcoef2('all',C,L,k); 

• For each level compute summation for each of the [chd2,cvd2,cdd2] components 
ch=sum(sum(chd2.^2)); 
cv=sum(sum(cvd2.^2)); 
cd=sum(sum(cdd2.^2)); 

• For each level compute power by taking summation of Cd vector using 
Ed(k) = (ch+cv+cd)/(M*M) 

where k is the level and  M = length(chd2); 

• Get log (Ed(k) vs log(k) plot and compute the slope, β using the following correlation 

βk
kEd 1)( ∝  

• Compute 
2

2−
=
βH  and D=3-H 
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APPENDIX-3: Expression for void volume fraction 

Void volume fraction, Vf, can be given by 

 
s

vv
f V

VK
V

.3

=  (1) 

where Kv is the number of dimples on the fracture surface, Vv is the volume of a void and Vs is 
the volume of the cylindrical specimen. Shape of the void is assumed as spheroid. 

For cylindrical specimens,  

 h
D

Vs .
2
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⎛= π  (2) 

where h is the gauge length of the specimen. Since h is a linear function of D0,  
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For a spheroid void, Vv 
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where xc  is the critical diameter of average void nuclei, at which the voids start coalescence.  

Assuming xc, the critical diameter of average void nuclei, as a function of the number of dimples 
on the fracture surface and the average diameter of the initial void nuclei, it can be written as 

 0.xKx vc ∝   (5) 

Substituting xc from equation (5) in equation (4), the volume fraction of voids become 
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Substituting equations (6) and (3) in equation (1), we get the expression for the void volume 
fraction as 
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