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Preface 

 

This dissertation is submitted for the degree of Doctor of Philosophy at the Indian 
Institute of Technology, Kharagpur, India. This investigation has been carried out in 
the Department of Metallurgical and Materials Engineering, Indian Institute of 
Technology, Kharagpur and at the Materials Evaluation Division (MTE), of National 
Metallurgical Laboratory, Jamshedpur, from January 1995 to Sept 2002. Except where 
acknowledgment to previous work is made, this dissertation is my own work assisted 
and guided by my supervisors at all stages, and no part of this work belongs to any 
other collaborative project. 

This dissertation is divided into six chapters. Chapter-1. addresses the significance of 
the study of monotonic and cyclic fracture resistance of SA333 Gr 6 steel, which is 
used in the fabrication of the primary heat transfer pipes in nuclear power plants. Some 
fundamental principles of fracture mechanics and its application in structural integrity 
assessment of the critical components, with emphasis on concepts related to cyclic J–R 
curves, and the scope of the investigation has been appraised in Chapter-2. The 
characteristics of the selected steel and its related mechanical properties including its 
dynamic strain ageing behavior at elevated temperatures have been described in 
Chapter-3. Chapter-4 examines the monotonic fracture toughness behaviour of the 
material at ambient and elevated temperatures. The effect of cyclic loading on the 
fracture resistance behaviour of the steel is discussed in Chapter-5. Each of the 
Chapters 3-5 includes the objective at the outset, followed by details of the 
experimental work, the results obtained and their pertinent discussion prior to the 
conclusions drawn. Chapter-6 gives an overall view of the major conclusions drawn 
from this investigation and suggests the future work in this field. 
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Abstract 

 

The fracture resistance behaviour of SA 333 Gr 6 steel has been studied, as a 
part of the assessment of the structural integrity of the primary heat transfer piping of 
nuclear power plants. The microstructure of the steel and its relevant mechanical 
properties such as hardness, tensile and impact properties have been characterized. A 
series of tensile tests and a few strain rate change tests have been carried in the 
temperature range of 28o to 300oC. Monotonic J-R curves of the material have been 
determined in the temperature range of 28-300oC, whereas cyclic crack growth 
resistance curves have been determined at the stress ratios of R = 0, -0.5, -0.8, -1.0 and 
–1.2, and for three plastic displacement levels 0.5, 0.3 and 0.15mm at the ambient 
temperature. Fractographic studies and examinations of crack tip profiles of specimens 
interrupted during monotonic and cyclic J tests have been carried out 

Microstructural characterization of the steel revealed banded ferrite-pearlite 
structure along both the longitudinal and transverse directions with high degree of 
cleanliness. The material exhibited dynamic strain ageing behaviour in the strain rate 
range 1.2x10-3 to 1.2x10-5s-1 and in the temperature range 200o to 300oC. The 
occurrence of dynamic strain ageing in the material between 200-300oC has been 
confirmed by strain rate change test. The results of fracture studies under monotonic 
loading infer: (a) the material exhibits high fracture resistance at room temperature; 
this has been attributed to its high degree of cleanliness, (b) the fracture resistance of 
the steel deteriorates in the temperature range 200-250oC; the deterioration in the 
fracture properties has been attributed to dynamic strain ageing behaviour operative in 
this temperature range, (c) the fracture initiation toughness and the crack propagation 
resistance are inferior along CL plane in comparison to LC plane; this has been 
attributed to the presence of elongated inclusions in CL crack plane and (d) the stretch 
zone in the investigated steel is of unconventional type and is intermixed with ductile 
tearing. 

The results and their analysis of the cyclic fracture behaviour of the steel lead 
to the following conclusions (a) cyclic J-R curves are similar for positive stress ratio, 
(b) The cyclic J-R curves, the fracture initiation toughness and the resistance to crack 
propagation of the steel were found to degrade with (i) decrease in stress ratio from 0 
to -1.0 and /or (ii) decrease in plastic displacement associated with these tests. The 
degradation in the fracture initiation toughness and the resistance to crack propagation 
of the steel for R < 0 occurs due to re-sharpening of the crack tip during compressive 
loading. The fractographic studies and examination of crack tip profiles have revealed 
that the crack propagation mechanism in monotonic and cyclic loading is different. An 
empirical relation has been proposed to estimate cyclic fracture toughness from its 
monotonic fracture toughness. 
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1.0 INTRODUCTION 

The SA 333 Grade 6 steel of current interest is used in primary heat transport 

(PHT) piping systems of pressurized heavy water reactors (PHWR). The operating 

temperature range of this structural component is 28-300oC. The primary heat 

transport piping and pressure vessels of nuclear power plants are designed and 

operated on the basis of leak before break (LBB) concept. In order to implement this 

LBB concept in the design of PHT piping, it is important to understand the fracture 

toughness behaviour of the material in its operating conditions. 

The SA 333 Gr 6 is plain carbon steel having carbon content of up to 0.3 wt%. 

It is well documented in the literature that plain carbon steels exhibit dynamic strain 

aging (DSA) behaviour in the temperature range of 150-450oC [1-3]. Since the service 

temperature of PHT piping is 28-300oC, it is important to understand dynamic strain 

aging behaviour in the steel in this temperature range. The occurrence of DSA 

degrades ductility and fracture resistance behaviour of steels [2-7]. Based on some 

observed degradation of fracture resistance of SA 333 variety steel at elevated 

temperature, an earlier report indicated the presence of DSA in this steel without any 

detailed investigation [5]. One of the major objectives in this investigation thus is to 

understand DSA in this steel prior to studies related to fracture behaviour of the 

material. 

The pipes used in PHT system possess an outer diameter of the order of 

406mm with a wall thickness of 32mm. So any attempt to probe fracture toughness of 

the material from specimens cut from this component is limited by curved sections of 

32mm thickness. This specimen thickness limitation permits one to carry out only 

assessment of elastic-plastic fracture toughness of the steel. The J-integral fracture 

toughness of a few steels having similar composition are reported in the literature [3-7] 

but such toughness indices of the selected steel at ambient and at elevated temperature 

are not available. Hence an investigation on the J-integral fracture behaviour of the 

steel was directed to understand the effect of DSA on the crack growth resistance 

behaviour of the steel. 

One of the current design considerations in nuclear power plants, is to safe-

guard all structural components against seismic (cyclic) loading. Some recent reports 
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have shown that fracture toughness of structural materials is inferior in cyclic loading 

condition in comparison to monotonic loading [8-11]. Since seismic loading may 

induce cyclic loading in a component, it is necessary to understand the fracture 

behaviour of the selected steel under cyclic loading condition also. 

In summary, the objectives of this investigation encompass studies on 

microstructural aspects, related mechanical properties, dynamic strain aging 

characteristics, monotonic and cyclic fracture behaviour of SA 333 Gr 6 steel. 

2.0 OBJECTIVES 

The major objectives and the pertinent work-plan to fulfil these are categorized 

into three broad modules. These are: 

(I) To characterise the microstructure and to determine the related mechanical 
properties of the selected steel with an emphasis to examine dynamic strain 
ageing behaviour at elevated temperatures. 

Module I: This module consists of (a) characterisation of the inclusions in SA 333 

steel, (b) determination of the amount and distribution of the various phases in the 

microstructure, (c) measurement of ferrite grain size, (d) determination of hardness 

and Charpy impact energy, (e) evaluation of tensile properties of the steel at ambient 

and at elevated temperatures at various strain rates and (f) examination of the tensile 

behaviour of the material during strain rate changes. 

(II) To study the monotonic fracture behaviour of the steel at ambient and at 
elevated temperatures. 

Module II: This module comprises of (a) generation of monotonic J-R curves of the 

steel at ambient and at temperatures in the range of 200 to 300oC, and (b) examination 

of the effect of crack plane orientation, test temperature and DSA on the fracture 

toughness behaviour of the material. 

(III) To study the cyclic fracture behaviour of the steel at ambient temperature. 

Module III: This module consists of (a) generation of a series of cyclic J-R curves of 

the steel at different test conditions, (b) investigation of the effect of stress ratio and 

plastic displacement on the J-R curve, (c) attempts to correlate the cyclic and 
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monotonic fracture initiation toughness of the material, and (d) examination of the 

micro mechanisms of crack propagation in the steel during various types of loading. 

In attempting to meet the above objectives, where ever possible standard test 

were carried out. But neither any standard nor any recommended practice is available 

for cyclic J-test. These tests have been designed and performed following a few earlier 

investigations. Attempts have been made to assign reasons and explanations for the 

observed results and to illustrate the practical utility of the generated data. The thesis 

has been structured into chapters, one for each of the major objectives listed above. A 

literature background related to the current investigation has been presented as a 

chapter prior to the obtained results and their discussion. An overview of the 

conclusions derived from this work has been summarized as a brief chapter together 

with some proposed future work related to this area. All references quoted throughout 

the dissertation have been compiled at the end. 

 3



2.0 LITERATURE REVIEW 

2.1. INTRODUCTION 

This chapter deals with the terminologies of linear elastic and elastic-plastic 

fracture mechanics in section 2.2. Various fracture mechanics parameters such as 

stress intensity factor (K), crack tip opening displacement (CTOD), J integral, R 

resistance curve and tearing modulus TJ have been defined and explained in brief. The 

engineering need and the concepts behind development of cyclic J-R curves are 

discussed in section 2.3. This section incorporates a review of available reports on 

cyclic J-R curves under various types of loading. Some information related to the 

phenomenon of dynamic strain aging with reference to steels used in pipings and 

pressure vessels are incorporated in section 2.4 illustrating the effect of dynamic strain 

aging on tensile and fracture toughness properties of steels. The significance of low 

carbon steels used in nuclear power plants is discussed in section 2.5. Finally a basis 

for the present investigation is provided in section 2.6. 

2.2. FRACTURE MECHANICS AND ITS TERMINOLOGIES 

Fracture mechanics encompasses stress analysis ahead of cracks, experiments 

and observations to suggest useful representation of forces that cause the development 

and extension of cracks. The crack extension behaviour is governed by the stress field 

distribution ahead of a crack tip as suggested by Irwin [12]. The material, in which 

crack propagation is accompanied by very small or insignificant deformation, 

predominantly behaves in linear elastic manner. Such materials come under the 

purview of Linear Elastic Fracture Mechanics (LEFM). On the other hand, if the crack 

propagation is accompanied by large plastic deformation, Elastic Plastic Fracture 

Mechanics (EPFM) approach is adopted to describe the crack driving forces ahead of a 

crack tip in the material. 

2.2.1. LEFM vis-à-vis EPFM 

The principle of linear elastic fracture mechanics (LEFM) is based on the 

unique distribution of stress ahead of a crack in a body under load. The amplitude of 

such a distribution is characterized by the stress intensity factor K, a critical value of 
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which provides the driving force for existing cracks to propagate. The solution of the 

stress field ahead of a crack using linear elasticity can be given as: 

 σij = 
K

( 2πr)
 fij(θ) (2.1) 

where, (r,θ) represent polar co-ordinates around the crack tip and fij(θ) are 

characteristic functions. The elastic stress field solution indicates the presence of a 

stress singularity at the tip of a crack. However in practice, most materials exhibit a 

yield stress above which they deform plastically. As a result there exists a region 

around the crack tip, which is plastically yielded. This region is called the plastic zone 

(PZ). The plastic zone size for a material with yield strength σys is given as: 

 rρ = 
1

nπ 




KI

σys

2

  (2.2) 

where the magnitude of n depends on the state of stress. 

The employment of LEFM remains valid as long as the size of PZ is 

insignificantly small in comparison to significant dimensions of the cracked geometry. 

In materials where the size of the PZ is large, fracture conditions are controlled by 

elastic-plastic fracture mechanics (EPFM). EPFM often uses the concept of non-linear 

elasticity to obtain solutions for equivalent plastic problems. Unlike LEFM, EPFM 

demands a careful understanding of the crack tip plasticity and currently this discipline 

provides a few  established  procedures  for obtaining fracture criteria.  These are: 

(i)crack tip opening displacement (CTOD), (ii) J-integral, (iii) R curve and (iv)Tearing 

Modulus TJ 

2.2.2. CTOD Parameter 

Wells [13,14] proposed that the failure of a cracked component can be 

characterised by the opening of the crack faces in the vicinity of a sharp crack tip 

known as crack opening displacement (COD). He showed that the concept of crack 

opening displacement was analogous to concept of critical crack extension force and 

thus the COD values could be related to the plane-strain fracture toughness, KIC. 

Because COD measurements can be made even when there is considerable plastic 

flow ahead of a crack, such as would be expected for elastic-plastic or fully plastic 

behaviour, the technique may be used to establish critical design stresses or crack sizes 

in a quantitative manner similar to that of linear-elastic fracture mechanics. 
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Dugdale's strip yield model analysis [15] relates COD to the applied stress and 

the crack length as given below 

 δ = 
8σysa

πE  [ln






sec 

πa
2σys

 ] (2.3) 

where,  

δ = crack tip opening displacement 

σys = yield stress, a = crack length,  

σ = the applied stress and E = the elastic modulus 

At σ/σys « 1, at the crack instability the above expression can reduce to 

 δIC = 
K2

IC(1-ν2)
λEσys

   (2.4) 

2.2.3. J Integral Parameter 

The path independent J-integral proposed by Rice [16] can be used to 

characterize the stress-strain fields at the tip of a crack and to analyse the fracture 

process in elastic-plastic materials. J can be computed by an integration path taken 

sufficiently far from the crack tip to be substituted for a path close to the crack tip 

region. Thus, even though considerable yielding occurs in the vicinity of a crack tip, 

the behaviour of the crack can be inferred by considering a region away from the crack 

tip for the analysis. This technique can be used to estimate the fracture characteristics 

of materials exhibiting elastic-plastic behaviour. For linear elastic behaviour, the J 

integral is identical to G, the energy release rate per unit crack extension. Therefore J 

failure criterion for the linear-elastic case is identical to the KIC failure criterion. For 

linear elastic plain-strain conditions, 

 JIc = GIc = 
(1-ν2)

E  KIc
2 (2.5) 

The energy line integral, J is defined for either elastic or elastic-plastic behaviour as 

follows 

 ∫
Γ









∂
∂

−= ds
x
u

TWdyJ i
i  (2.6) 

where, W= = strain energy density, (2.7) ∫
ε

εσ
0

ijij d

jiji nT σ=  = vector of surface tractions, 
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iu = displacement vector, 

s = element of arc length along contour Γ . 

For any linear elastic or elastic plastic material treated by deformation theory 

of plasticity, Rice [16] had shown path independence of the J integral parameter. The J 

integral can be interpreted as the potential energy difference between two identically 

loaded specimens having slightly different crack lengths i.e., a and a+da. The energy 

parameter J is given as, 

 J = -
1
B 
∂u
∂a  (2.8) 

This definition is shown schematically in Fig.2.1 where the shaded area is ∂u = JB∂a. 

Begley and Landes [17] developed compliance technique for evaluating J-integral, 

which made this fracture mechanics parameter more popular in comparison to other 

fracture mechanics parameters. Standard test procedure for determining the fracture 

toughness of the ductile materials in terms of J integral has been developed and 

incorporated in ASTM standard E-1820 [18]. Generally three point bend or compact 

tension specimens are used for J integral testing of the materials. 

2.2.4. Crack Growth Resistance Curve (R curve) 

For thin sheets resistance to crack growth R increases as the crack grows from 

its initial length as shown in the Fig.2.2. In this case instability occurs when a line of 

G1 at constant load becomes tangent to the R-curve, i.e.  

G1 = R 

and  

 
∂G1

∂a  = 
∂R
∂a  (2.9) 

The idea of a crack  growth  resistance or R-curve was first suggested by Krafft 

et al. [19]. These investigators postulated that the crack resistance curve should have a 

unique shape for each material independent of initial crack length, specimen geometry 

and boundary loading conditions. This concept is expressed in terms of stress intensity 

factor, KC and KR as given in Fig.2.3. The critical stress intensity factor, KC, is that at 

which tangency between KR and KC occurs. In making the estimate of KC, R curves are 

regarded as though they are independent of the initial crack length ai and the specimen  
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geometry. The concept of the resistance curve is now well accepted. The standard 

methods of determining R-curves have been documented in ASTM standard E-561 

[20]. 

2.2.5. Tearing Modulus 

Materials having good ductility show appreciable plasticity at fracture and 

usually undergo slow and stable crack growth before fracturing. Thus the crack will 

start growing at a critical value, JIC/JC, and hence it is useful in quantifying the onset 

of fracture. But further increase of stress is required to sustain the crack growth. 

Apparently the crack resistance increases with crack growth, which is reflected in a 

higher value of J integral. The crack resistance curve is called as R curve, JR curve or 

J-R curve. Thus the criteria for stable crack growth can be written as 

 J = JR (2.10) 
fracture instability will occur when  

 J ≥ JR (2.11) 
on differentiation  

 
dJ
da ≥ 

dJR
da   (2.12) 

In high toughness materials crack initiation is not the only relevance but 

propagation stage is also important, and it will have considerable lifetime left after the 

crack initiation. Therefore greater attention is now being focused on the investigation 

of both crack initiation and propagation behaviour of the materials. This has prompted 

several investigators to study the stability of crack growth based on the concept of J 

integral resistance curves. 

Paris et al. [21] have proposed a dimensionless form for the crack growth 

resistance parameter. It has been denoted by TJ and is called as tearing modulus. 

 TJ = 
E

σo
2 

dJ
da  (2.13) 

where, 

E = elastic modulus of the material 

σo = flow stress of the material 
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This parameter offers a convenient definition for crack growth toughness based on the 

J integral approach. Here dJ/da is the slope of J-∆a resistance curve in the stable crack 

growth region. 

Thus the applied instability criterion is: 

Tapplied > TJmaterial 

Hutchinsion and Paris [22] suggested that the assumption of J controlled crack 

growth is valid when the following conditions are fulfilled  

 ω = 
b
J .

dJ
da >> 1 (2.14) 

and     a < 0.06b 

for CT specimens, the value of ω may not be less than 10 [22]. In the case of ductile 

materials, the fracture may be characterized by a critical crack opening displacement 

δc [23] Analogous to J-R curves, δ-R curves may also be constructed. The CTOD 

resistance is often expressed as crack tip opening angles CTOA [23]. 

2.3. CYCLIC J-R CURVE 

Engineering components can be subjected to a wide variety of service loads 

and should be designed to operate safely under all such variations. The safety 

assessment for monotonic  loading can be  achieved using the  concepts of KIc, JIc, or 

δc; under fatigue loading it can be achieved using Paris law [24]. This law is expressed 

as  

 
da
dN = C(∆K)m (2.15) 

where, 
da
dN = crack growth rate of material per cycle, 

∆K = applied elastic stress intensity range 

C and m are material constants. 

When an engineering component is subjected to monotonic loading with intermittent 

cycling neither the conventional monotonic fracture toughness values nor the Paris law 

constants are sufficient to predict its safe operating margins with reliability. This 

situation is not a mere hypothesis, but is documented by a Japanese group who 

recorded severe extent of load reversals on engineering components during a seismic 
 11



event [25]. This aspect has been of serious concern for several critical engineering 

components like that in nuclear power plants. As a consequence attempts are being 

made over the last two decades to understand cyclic J-R curves. 

2.3.1 Cyclic J-R curves for R ≥ 0 

Reports on the determination of cyclic J-R curves of engineering materials may 

be divided broadly into two categories viz., tests conducted with a load ratio, R≥0 and 

R<0. Important observations and conclusions from various reports are summarized in 

Table 2.1. Clark et al. [26] in their attempts to establish a single specimen partial 

unloading technique for fracture toughness determination, imposed partial unloadings 

upto 10% of maximum load on CT specimens. These partial elastic unloadings were 

used for calculating (intermittently) crack lengths and J-R curves, developed for CT 

specimens of thickness ranging from 0.5 to 5 inches. The J-R curves were observed to 

be identical for small crack extensions in all the specimen sizes. The slopes of J-R 

curves change for different specimen sizes at large crack extensions. It was concluded 

by these authors that the partial unloadings do not alter the J-R-curves of the material 

as long as the process zone to plastic zone size ratio remains within a limit. Similar 

findings were also reported by Joyce [27]. He confirmed that unloading up to 50% of 

Pmax during J-R tests on specimens of 3% Ni structural steel has no effect on fracture 

initiation toughness of the material. However, unloading upto 100% of Pmax lowers the 

fracture toughness of the same material. Several other investigators [28-31] support 

the observations that the difference between J-R curves obtained at R = 0.5 and R = 0 

(unloading of 50 and 100% of Pmax respectively) is insignificant. 

Kaiser [28] investigated two steels, one pressure vessel steel and the other a 

quenched and tempered structural steel, of yield strength 375 and 750MPa 

respectively. The tests for crack growth resistance were carried out by Kaiser, in 

displacement control with constant increase in total displacement during each cycle. It 

was observed by the author that as the incremental displacement decreases, the slope 

of the J-R curve also decreases, and for the smallest displacement, the slope is 

minimum. For the large plastic displacements there were only 20 unloadings, whereas 

for smaller displacements there were more than 100 unloading cycles. The effect of 

cycling was very pronounced for small incremental displacement (0.74µm) and the 

slope of J-R curve was only 5% of that of the monotonic J-R curve. This implies that  

 12



 
Table 2.1 Summary of literature on the effect of cyclic loading on fracture resistance of materials. 

Author   Material Material Properties
σys       σuts      %El 

Test parameters Observations 

Clarke 
[26] 

3.6% 
Nickel 
Steel              

607          -N.A.- Displacement control, 
UL only upto 90% of 
Pmax 

No change in J-R curves for 30 cycles. 

Joyce [29] 3% Nickel 
structural 
Steel 

607      724     26% Strain control UL of 50 
and 100%  
∆V 0.005 and 0.05 

No change in JIc and J-R curve for ∆V 0.005mm and 50% 
unloading 
JIc changes and J-R curve reduces for 100% unloading 
J-R curve falls slightly above monotonic scatter band. 

Kaiser 
[28] 

High 
strength 
quenched 
& tempered 
structural 
steel  

750     860      N.A Displacement control 
R 0 
With increase in ∆V in 
each cycle (frequency 
of loading 0.1-0.025 
Hz 
∆V 7.4x10-4 mm to 0.5 
mm/cycle 

Cyclic J-R curve falls within the monotonic J-R curve 
scatter band for large ∆V. 
As ∆V on decreases and no of UL increased, the slope of 
J-∆a line decreased and it is least in the case of ∆V 0.74 
µm.  The linear summation of ∆acyclic and ∆atearing leads to 

∆atotal measured from expt. Thus when the calculated 
∆acyclic component is subtracted from the ∆atotal the cyclic 
J-R curves fall within the scatter band of monotonic J-R 
curve 

 
UL: unloading; ∆V: incremental plastic displacement, σys, σuts in MPa N.A. not available 
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Table 2.1 continued 

Author   Material Material Properties
σys       σuts    %El 

Test parameters Observations 

Kobayashi 
[29] 

2.5Cr-1Mo 
Steel 
quenched  
and 
tempered 

510,  659,  28.8%  0.5,  0,  -0.5,  -1.5, 
increment of constant 
displacement 

The cyclic P-∆ curve deviates to the lower side of 
monotonic P-∆ curve. They concluded that there exists no 
cyclic J-R curve to be contrasted with the monotonic J-R 
curve. In case of ductile tearing, the cyclic J-R curve is 
gradually changed to the monotonic J-R curve. 

Mogami 
[30] 

Reactor 
Pressure 
Vessel 
Steel A508 
class 3 
STS 42 
carbon steel 
for piping 

420,  545,  21.8% 
 
 
 
279,  442,  35.6% 

Stroke control 
R ratio 0 
∆Vmax,0.25mm 
           0.5 
           1.0 
Load control  
R ratio   0.1,  -1.0 
Pmax 27.5 kN 
        34.3 
        31.4 
        34.3 kN 

Cyclic Jmax-R curve coincides with the monotonic J-R 
curve. It has been observed that da/dN cannot be 
extrapolated by ∆J if the value of da/dN is about 3 to 
1x10-5 mm/cycle. However they have suggested an 
equation in which Jmax is used for extrapolating da/dN. 
The value of J at instability for R= 0.1 and –1.0 were 
same as monotonic condition. 

 
UL: unloading; ∆V: incremental plastic displacement, σys, σuts in MPa N.A. not available 

 14



Table 2.1 continued 
Author   Material Material Properties

σy,       σuts,   %El 
Type of testing  &    R 
ratio 

Observations 

Dowling 
[34] 

A533 B 
Pressure 
Vessel Steel 

70 Ksi Load control tests to 
sloping line 

Crack growth rates in between 4x10-5 and 10-2 in/cycle 
shows excellent correlation with ∆J using Rice et. al. 
approximation. At higher crack growth rates da/dN vs ∆J 
data is agreement with the straight-line extrapolation on a 
log- log plot of the linear elastic fracture mechanics data. 
Macroscopic crack closure during gross plasticity is an 
important effect and significantly influences the fatigue 
crack growth rate. Growth rates during incremental 
plastic deflection cannot be predicted by a ∆J criterion 
alone, a more general criterion that includes the effect of 
the mean J-level in needed.  

Landes 
and 
McCabe 
[8] 

HY130, 
A508 Cl 2 

Not available Displacement control 
ratcheting cracking 

The two different steels showed different responses to the 
cyclic loading. 
HY-130 steel has no influence of cyclic loading. Cyclic J-
R curve falls within the scatter band of monotonic J-R 
curve. Strong cyclic growth was observed for A508 Cl 2 
steel crack growth increments for cyclic loaded cases are 
much higher than that for the monotonic case. 
The linear summation model suggested for determining 
the influence of the cyclic loading on the crack growth 
increments could not be conclusively evaluated. 

 
UL: unloading; ∆V: incremental plastic displacement, σys, σuts in MPa, N.A. not available 
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Table 2.1 continued 
Author   Material Material Properties

σys       σuts      %El 
Test parameter Observations 

Landes 
et al. [9]  

Modified 
4340 steel 

1041    1121    16% Ratcheting crack (RC) 
Elastic Dominance 

Cyclic loading has been found to alter the toughness 
behavior of this steel. For ductile fracture, R curves 
developed during cyclic loading appear to combine a 
monotonic and cyclic component of crack growth. 
A model using a linear combination of monotonic and 
cyclic crack growth could not predict the crack growth 
accurately. Additional component of crack growth to 
make up the short fall is termed as crack growth, model 
predicts results much better, although no mechanistic 
rational for this term was given. 

Soek et 
al. [10] 

SA 516 Gr70 NA 0.5, 0, -0.3, -0.6, -0.8 
and –1.0 

The crack growth resistance was found to decrease with 
decrease in stress ratio. 

Rudland 
et al. 
[11] 

304 SS, A106 
GrB 

NA  0, -0.3, -0.6, -0.8 and 
–1.0 

The crack growth resistance was found to decrease with 
decrease in stress ratio. The effect of cycling saturates at 
R value of –8.0 and –1.0 for A106 steel for 304 SS 
respectively. 

 
 
UL: unloading; ∆V: incremental plastic displacement, σys, σuts in MPa N.A. not available 
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certain amount of crack growth takes place in each cycle that can be estimated by Paris 

law given by eqn (2.15). Assuming the total crack extension to be linear summation of 

“crack growth due to fatigue” and “monotonic crack extension”, it follows that: 

 
da

dN total
 =

( )dafatigue +datearing

dN   (2.16) 

               =
dafatigue

dN  + 
datearing

dN    (2.17) 

we know that 

 
dJ
da = 

TJ σys
2

E   (2.18) 

where, TJ is the tearing modulus, 

Equation (2.18) can be written as, 

 daplastic = 
EdJ

 TJ σys
2  (2.19) 

and dafatigue can be written as 

 
da
dN = C1(∆Jfatigue)m1  (2.20) 

where, C1 and m1 are constants derived from Paris law; 

Substituting these in equation (2.17) one can get, 

 
da

dNtotal
= C1(∆Jfatigue) m1 + 

EdJpl

TJσys
2 (2.21) 

A comparison of values obtained from experimental data of a vs N curve and those 

calculated from eqn.(2.21) showed a good agreement. When the number of cycles 

imposed is of the order of 20, the unloadings up to 90 to 100% do not result in any 

apparent cyclic crack extension and the J-R curves remain unaltered. An exception to 

this observation was reported by Joyce et al. [32] for ASTM designation A710 grade A 

class 3 steel having σys and σuts of 643 and 732.3 MPa, respectively. They concluded 

that if R ratio is small, the cycling appeared to have little effect on the subsequent 

tearing resistance, but if R ratio was decreased the subsequent tearing resistance was 

also decreased. 

2.3.2 Cyclic J-R curves for R<0  

The summary of cyclic J investigations as listed in Table 2.1 suggests that 

number of reports on cyclic J-R curves for R < 0 is scanty. Among the few available 
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reports, the work of Landes and MaCabe [29] was the first to investigate the J-R curve 

behaviour under compressive cyclic loading. The investigations by Landes and 

MaCabe are on HY130 and A 508 steel using 1CT specimens. A schematic 

representation of different load histories applied to the specimens by these workers is 

shown in Fig.2.4 and the test conditions are shown in Table 2.2. 

Table 2.2 Cyclic J-R-curve test conditions [8] 

Material Displacement 
at first unload, 

in. 

Cyclic 
range, 

in. 

Cyclic 
spacing 

in. 

Total 
displacement 

in. 

Number 
of 

Cycles 

HY-130 0.035 0.035 0.005 0.100 13 

HY-130 0.035 0.035 0.001 0.100 ~70 

A508 Cl 2 0.060 0.060 0.010 0.200 13 

A508 Cl 2 0.100 0.060 0.002 0.250 ~75 

The study employed two methods of estimating J-integral. Landes and MaCabe 

[8] determined J from the positive area under the load displacement curves and 

compared with the scatter band of the monotonic J-R curves of the material. In the 

case of HY-130 steel, the developed J-R curve remained well within the scatter band 

of the monotonic J-R curve for both the displacement levels as given in Fig.2.5. 

However, A508 steel exhibited different nature in comparison to HY-130 steel.  The J-

R curves of A508 steel is reported to lie well within the monotonic J-R curve scatter 

band for the case of larger incremental displacement. For smaller displacements, 

where the specimen is subjected to five times more number of cycles, J-R curve was 

reported to fall much below the monotonic J-R curve scatter band as shown in Fig.2.6. 

The initiation toughness JIC was reported lower for the specimen that experienced 

more number of cycles for A508 steel. An attempt has been made to model the extent 

of crack growth by linear summation. No convincing explanation has been provided 

for the above observations by the investigators [8]. 

In another report by Landes and Liaw [9], the effect of cyclic loading under 

negative R ratio on fracture toughness of modified 4340 steel has been discussed. The 

material was quenched and tempered to yield strength of 1041MPa (151Ksi). Standard 

1CT specimens were tested by these investigators for both ratcheting loads and elastic 

dominance loads (as shown in Fig.2.4). In elastic dominance loading a progressively 

increasing maximum displacement is provided during each cycle and unloaded to zero  
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Fig.2.5 Cyclic J–R data for HY-130 steel [8]Fig.2.5 Cyclic J–R data for HY-130 steel [8]
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.6 Cyclic J–R data for A508 Class 2 steel [8]Fig.2.6 Cyclic J–R data for A508 Class 2 steel [8]  
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displacement levels. This type of tests simulated the case where the elastic boundary 

had such a large effect that the material always returns to starting strain level upon 

unloading. It has been observed by the authors [9] that the resistance to crack 

propagation is inferior in the case of cyclic loading in comparison to monotonic 

loading. The linear summation model of cyclic crack growth did not hold good for 

compressive cyclic loading in the case of modified 4340 steel. 

Mogami et al. [30] also investigated the effect of complete cyclic reversal load 

on ASTM A508 class 2 and STS 42 steels. The authors have commented that cyclic 

Jmax-R curve is lower than monotonic J-R curve but falls back on monotonic J-R curve 

for large crack extensions. They observed that cyclic J-R curve for a cyclic load of a 

high level, in which fatigue crack growth rate was about or above 0.1mm/cycle, nearly 

coincided with monotonic J-R curve. But cyclic J-R curve is reported to be placed 

lower than the monotonic J-R curve if unloading is started at lower J level, when 

fatigue crack growth rate was less than 0.1mm/cycle. To characterise fatigue crack 

growth aspects, the authors proposed an equation as given below 

 
da
dN = C 









 
∆J

(B- Jmax)
m (2.22) 

Joyce [32] concluded that the cyclic J-R curve tests under COD control do not 

show significant effect on the ductile tearing toughness for A710 gradeA class 3 steel. 

It was also shown [32] that increasing the ductile tearing step in each cycle improves 

the resistance but this is always lower than the base line monotonic J-R curve for the 

steel investigated. Kobayashi et al. [29] have observed in the case of a 2.5Cr-Mo steel, 

that the J-R curve for R ratio of -1.5 falls below monotonic J-R curve and exhibits 

increased crack extensions. Rudland et al. [11] have reported, for 304 SS and A106 

GrB plain carbon steel, that the fracture initiation toughness and the resistance to crack 

propagation decrease with decrease in stress ratio as well as decrease in plastic 

displacement. The effect of cycling on J-R curve saturates at a stress ratio of –0.8 and 

–1.0 for A106 steel and SS 304, respectively. Soek et al. [10,33] investigated the effect 

of reversed cyclic loading on the fracture resistance of SA 516 Gr 70 steel. They also 

reported that cyclic J-R curves fall below the monotonic J-R curve. Pronounced effect 

of decreasing R and decreasing incremental plastic displacement on lowering J-R 

curve are similar to the conclusions drawn by Joyce et al. [31]. On the basis of stress 

analysis, it was reasoned by these investigators that considerable amount of residual 
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tensile stress remains ahead of the crack tip when the load becomes zero at position 4, 

as in Fig.2.7 at the end of each cycle. Thus in the next cycle when the specimen is 

being loaded, crack tip opens up at a lower load level due to the additional residual 

tensile stress resulting in lower J-R curves. It was also shown that the stresses at the 

end of loading (position 3 in Fig.2.7) are compressive in nature and at position 4 only 

tensile residual stresses prevail. So there must be some point in between positions 3 

and 4 where residual stress is zero. It is reasoned that the particular load level at which 

the residual stresses are zero should be taken for calculating operational J. 

2.3.3 Dowling’s Low Cyclic Fatigue Analysis 

Dowling et al. [34] were the first to employ the J integral parameter in place of 

linear–elastic stress intensity factor, ∆K for cyclic crack growth. The cyclic J is 

evaluated by integrating the load-displacement data for each individual cycle. 

However, the integration is applied to the area DBCD as in Fig.2.8, against the 

conventional understanding of J (area EBFE). The point 'D' in the schematic diagram 

is derived from the analysis of crack closure. Owing to the reversed plasticity during 

the part of a cycle having compressive load, the crack tip does neither experience any 

tensile load, nor opens fully, till a significant magnitude of the load is acquired during 

reload part of the cycle. The Dowling’s  ∆J is referred to as an operational J value and 

it is a modification of the classical J integral parameter. The Dowling’s  ∆J 

methodology enables one to handle reverse loading, but the data analysis is 

complicated. This method needs the complete load-displacement data and information 

about crack closure during each cycle. 

The Dowling's operational J has been denoted as ∆J by the authors and was 

followed by several other researchers. The ∆K in LEFM regime of FCG is usually 

converted to ∆J through the relation ∆J = (∆K)2/E, to obtain da/dN data in terms of ∆J. 

The ∆J as discussed by Dowling will henceforth be denoted as ∆JD in further 

discussion to avoid any confusion. 

Landes and McCabe [8] have also analysed the load-displacement data using 

Dowling's method. The results reported by these authors showed that da/dN vs. ∆JD 

data for HY130 steel do not fall on the extrapolated line of da/dN vs ∆J data converted 

from ∆K, as shown in Fig.2.9. Crack growth is 5 to 15 times higher than the values of 

extrapolated fatigue data. The behaviour of HY130 steel was labelled as R-curve  
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Fig 2.7 Hysteresis loop during cyclic loading [10] 
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Fig.2.8 Dowling’s operational definition of cyclic J [34]
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Fig.2.9 da/dN vs ∆J for HY-130 steel loaded cyclically and compared 
with da/dN data on HY-140 [8]
Fig.2.9 da/dN vs ∆J for HY-130 steel loaded cyclically and compared 
with da/dN data on HY-140 [8]  
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dominated crack growth. A strong cyclic crack growth effect was observed for A508 

class2 steel by Mugami et al.[30]. The da/dN vs ∆JD plot for this steel falls within and 

near the da/dN vs. ∆J data converted from ∆K as given in Fig.2.10. This suggests that 

a majority of crack growth occurred due to cyclic component of loading rather than 

monotonic component, labelled as cyclic dominated crack growth. The difference in 

cyclic J-R curves of these two steels has been attributed [30] to the differences in 

contribution of cyclic and monotonic components to the resultant crack growth. 

The Dowling's ∆JD analysis when applied to 4340 steel, Landes and Liaw [9] 

have observed da/dN data to fall above the upper boundary of the extrapolated FCGR 

data obtained in LEFM regime. The crack growth rate is higher than what can be 

predicted from da/dN vs. ∆K plot. These investigators [9] made an attempt to develop 

a model through a linear combination of monotonic and cyclic components of crack 

extension. It was observed that the summation rule works well in both the loading 

conditions for a few initial cycles. After that, the ∆a obtained experimentally was 

reported to be larger than the ∆a evaluated from linear summation of monotonic and 

cyclic components. 

The cyclic crack growth resistance of a material depends significantly on the R 

ratio. The compatibility of cyclic and monotonic crack resistance is sensitive to test 

conditions. Attempts to obtain cyclic crack extension in terms of monotonic crack 

growth plus fatigue crack growth are shrouded with controversy. 

2.4 DYNAMIC STRAIN AGING 

One of the major reasons for the discontinuous tensile flow behaviour of the 

materials is well known to be due to dynamic strain ageing. In this phenomenon the 

solute atoms are able to diffuse in a specimen at a rate faster than the speed of the 

dislocations so as to catch and lock them [35, 36] with resultant increase in load. But 

when the dislocations are torn away from the solute atoms there is a load drop. This 

process occurs many times, causing the serration in a stress-strain curve, which is the 

manifestation of DSA. 
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Fig.2.10 da/dN vs ∆J for A508 Class 2 steel loaded cyclically and 
compared with da/dN data on A533B [8]
Fig.2.10 da/dN vs ∆J for A508 Class 2 steel loaded cyclically and 
compared with da/dN data on A533B [8]
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2.4.1 Effect of DSA on Tensile Behaviour  

Low carbon steels employed in power plant components are subjected to moderate 

temperature (28-350oC) in service, and hence their tensile behaviour under varying 

temperatures has been investigated by several researchers [1-3,5-7,37]. In general 

engineering structural steels show decrease in yield strength (σys) and ultimate tensile 

strength (σuts) with attendant increase in total percentage elongation (et) and 

percentage reduction in area (RA) with increase in temperature. However, some low 

carbon steels show fairly opposite trend i.e., hardening effect in the temperature ranges 

100o-370oC [38]. Kim and Kim et al. [3,37] have observed an increase in the ultimate 

tensile strength with increase in temperature for SA 106 Gr C steel along with a 

corresponding decrease in percentage total elongation. Marschall et al. [6] have also 

observed similar trends for A106 steel in the strain rate range of 4x10-5 to 4x10-4s-1. 

These observations are believed to reflect the occurrence of dynamic strain aging 

behaviour of the materials in the temperature range 200-350oC [6]. The signatures of 

dynamic strain aging phenomenon can be observed in low carbon steels with the rise 

in test temperatures [39] as changes in the following properties  

• An increasing trend of ultimate tensile strength with temperature 

• A decreasing trend of ductility properties with increasing temperature 

• Peak in the variation of work hardening exponent ‘n’ with temperature 

• A minimum in the strain rate sensitivity (γ) with γ going negative in the 

temperature region of serrated flow. 

• A peak in the variation of the Hall-Petch slope kε with temperature. 

Dynamic strain aging is a time and temperature dependent phenomenon. Alteration 

in the rate of straining can shift the occurrence of DSA phenomenon from one 

temperature range to another temperature range. Singh et al. [5] have observed 

continuous increase in ultimate tensile strength when temperature was increased from 

200 to 300oC for SA333 Gr 6 steel and its weld metal. With increasing temperature, 

decrease in total elongation for both the materials at a strain rate of 1.2x10-4s-1 has also 

been reported by these authors. These observations have been attributed to the possible 

occurrence of dynamic strain aging in SA 333 steel, But no detail account of DSA in 

SA333 steel is available. 
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2.4.2 Effect of DSA on Fracture behaviour 

The reports available in literature on the influence of DSA on the fracture 

behaviour of steels are summarized in Table 2.3. In general it has been observed by 

several group of investigators [3,4,6,40-47] that DSA has detrimental effect on 

fracture toughness behaviour of a material. Both the fracture initiation toughness and 

the resistance to crack propagation are found to decrease in the DSA operative range 

with only one exception reported by Srinivas et al [48] who observed that in the DSA 

regime the value of fracture initiation toughness, JIC, is maximum at 473oK, for Armco 

iron. The reason for this behaviour has been attributed to the difference in the 

mechanisms of void nucleation and coalescence in Armco iron with respect to the 

other alloys. However, it has been observed by them that the slope of the J-R curve 

(dJ/da) i.e. tearing modulus or resistance to crack propagation decreased in DSA 

regime with a minimum value at 423oK. 

Seok and Murthy [49] have observed for 1CT specimens of A516 Gr 70 steel 

that there is no decrease in JIC, even in DSA regime. The same group, however, have 

observed that the total energy to fracture, obtained from the area under the load-

displacement plots for three point bend Charpy size specimens shows a dip in the DSA 

regime. Kang et al. [50] have found no influence of DSA phenomena on JIC in SA 508 

steel. A few other researchers [3,4,6,36,39-44,48,49] have observed lowest fracture 

toughness JIC/ JQ/ CTOD and R curve, in the DSA operative temperature regime. Kim 

and Kang [3] have pointed out that the direct current potential drop (DCPD) method is 

more sensitive to the crack initiation toughness induced by DSA than the ASTM 

unloading–compliance method. The results of Leak Before Break (LBB) analysis on 

SA 106 Gr C piping steel [40] and stress corrosion cracking in A533B steel [46] also 

showed the detrimental effects of DSA on fracture toughness properties of the 

materials. 

In brief dynamic strain aging degrades fracture resistance of a material. But 

dynamic strain ageing occurs under specific combination of temperature and strain rate 

and such test conditions must prevail for the degradation of fracture toughness 

properties. 
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Table 2.3 Effect of DSA on Fracture Resistance Behaviour of Materials. 

Author Type of test Steel Remarks 

Chakarvartt
y [40] 

Tensile Test ASTM A203 D 
nuclear structural 
steels 

Area under the stress strain curve has been 
considered as measure of toughness and it 
was found to be less in DSA regime. 

Mukherji 
[41] 

Side grooved 
CT specimen, J-
R curves 

Schedule 100SA 
106B piping and 
welds 

Fracture initiation toughness, JIc and crack 
growth resistance curve were found to be 
less at 250oC in comparison to 25oC due to 
DSA. 

Samuel [43] Multi specimen 
JIc and single 
specimen 
testing; 

Crack length 
measurement 
using by DCPD 
technique 

SS 316L JIC decreases with increase in temperature. 
dJ/da is independent of temperature upto 
375oC and decreases drastically by 50% at 
550oC 

Srinivas 
[47] 

Multiple 
specimen J-R 
curve 

Armco Iron JIc shows a maximum value at 200oC; dJ/da 
decreases in the DSA regime with a 
minimum at 150oC 

Kang [3] JIc as per ASTM 
E 813, Ji 
detection by 
DCPD 
technique 

SA 508 nuclear 
pressure vessel 
steel 

JIc determined as per ASTM is unaffected 
by DSA, but Ji determined by DCPD 
technique shows a minimum due to DSA. 
Tearing modulus shows similar trend as Ji. 

Marengo 
[46] 

JIc (as per 
ASTM E813-
89) CTOD         
(ASTM E 1290-
89) 

J-R curve 
(ASTM E-1152-
87) 

A 533 B and 516 
70 

All the three fracture toughness parameter 
JIc, CTOD and J-R curve are lowest in the 
DSA operative temperature range. 

Kim [4] Side grooved 
compact tension 
specimen, J-R 
curve testing 

Steel 100 SA 106 
B piping and 
welds 

JIc and J-R curves lower at 250oC than at 
25oC due to DSA. 

Atkinson 
[44] 

Slow strain rate 
test 

A 533 B reactor 
pressure vessel 
steel 

Stress corrosion cracking (SCC) enhances 
in DSA regime. 

Kim [40] Leak Before 
Break (LBB) 
analysis: True 
σ-ε curves and 
J-R curves from 
DCPD method 

SA 106 GrC 
piping steel  

Ji, dJ/da in DSA region were 30-40% lower 
than at room temperature. The leakage –
crack size (LSC) length has a minimum 
with DSA at 296oC and increases with 
increasing strain rate (an inverse effect). 
The LBB allowable load window is reduced 
by 30% in DSA regime. 
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2.5. THE LOW CARBON- STEELS USED IN NUCLEAR POWER PLANT 

Low carbon steels provide moderate strength, good formability and ductility at 

relatively low cost. Thus it finds its application in a wider range. These steels having 

very low levels of inclusions possess high fracture toughness properties. They are used 

in fabricating critical components like primary heat transfer pipings and pressure 

vessels in the nuclear power plants. The design philosophy of these components is 

"leak before break (LBB)". In high risk containment vessels LBB design concepts 

ensure that any damage due to accidents or natural calamities like earthquake etc 

leakage of fluid precedes burst/ rupture of the component. High possibility of leakages 

being detected enhances safe operation of these components. 

‘Section II A: Ferrous Materials’ of the Boiler and Pressure vessel code has 

various material specifications, that are employed in fabrication of nuclear power 

plants components. The corresponding ASTM specifications are given in the Annual 

book of ”ASTM Standards vol.1.01 Steel-Piping, Tubing, Fittings”. A large number of 

reports are available in the literature on the various aspects of steels used in nuclear 

power plants. Low carbon steels or low alloy steels having suitable mechanical 

properties and of low cost are abundantly used in the fabrication of several meters long 

primary heat transfer piping system (PHT) and pressure vessels. A list is given in 

Table 2.4, which provides general information about their specifications, relevant 

components for applications and nominal chemistry [6,28,30,49,51-54]. The material 

selected in the present investigation is ASME grade SA333 Gr 6 steel [51]. It is used 

in the primary heat transport system pipings (PHT) of pressurised heavy water 

reactors. The equivalent ASTM grade of this steel is A333/A333 M-94 [52]. The 

chemical composition and the minimum specified tensile properties as per several 

International specifications are given in Table 2.5 and Table 2.6 respectively. 
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Table 2.4 List of carbon steels used in nuclear power plants. 

Sl.No. Specification Component Composition wt% 

1. ASTM A 106 Grade B 
[6] 

Coolant Pipings C (0.28)-Si (0.18)-Mn (0.82)-Ni 
(0.11)-C r(0.11) 

2. ASTM A 533 Grade B 
[53] 

Pressure vessel plate C (0.25)-Si (0.24)-Mn (1.38)-Ni 
(0.61)-Cu (0.13)-Mo (0.49) 

3. ASTM A 508 Class 2 
[30] 

Re-circulation 
pipes, Pressure 
vessel nozzle 

C (0.19)-Si (0.21)-Mn (0.88)-Ni 
(0.81)-Cr (0.40)-Mo (0.59) 

4. OX 540 [28] Pressure vessel steel C (0.2)-Si (0.12-0.5)-Mn (1.8) 

5. ASME SA 516 Gr 70 
[10] 

Pressure vessel plate C (0.28)-Si (0.13-0.45)-Mn 
(0.79-1.30) 

6. ASME SA333 Gr 1 to 6 
[51] 

Pipes C (0.30)-Si (0.058)-Mn (0.29-
1.06) 

7. JIS* STS 42 [54] Pipe C (0.16)-Si (0.28)-Mn (1.30) 

8. JIS STS 49 [54] Pipe C (0.16)-Si (0.28)-Mn (1.14) 

9 JIS SFVC2B [54] Pipe C (0.20)-Si (0.25)-Mn (1.16) 

10. JIS SGV 42 [54] Pipe C (0.15)-Si (0.22)-Mn (1.11) 

Table 2.5 Nominal chemical composition of the SA 333 Gr. 6 steel [51,52]. 
Name of element wt % 

C 0.30 

Mn 0.29-1.06 

P 0.048 

S 0.058 

Si 0.10 

Table 2.6 Minimum tensile properties of SA 333 Gr. 6 steel at 28oC [51,52] 
Properties Longitudinal Transverse 

Yield strength (MPa) 241 240 

Ultimate tensile strength (MPa) 414 415 

Total elongation (%) 22% 12% 

2.6 RE-APPRAISAL OF THE PROBLEM 

The components such as heat transport pipes are designed on the concepts of 

leak before break (LBB). The LBB approach implies the application of fracture 

mechanics principles to demonstrate that the pipes are highly unlikely to experience 

sudden catastrophic rupture without prior indication of detectable leakage. The 
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assessment of structural integrity of the pipes requires the knowledge of the fracture 

initiation toughness and resistance to crack propagation of the material. This 

necessitates detailed understanding of fracture behaviour of the pipe material. 

However, the effects of different factors like R ratio, extent of plastic displacement and 

the crack plane orientations are also pertinent for the steel under consideration. It is 

known that this material shows embrittlement phenomenon through increase in 

ultimate tensile strength and decrease in ductility properties in the temperature range 

200 to 300oC. The effect of these embrittlement aspects on fracture toughness of the 

steel needs to be understood. For conservatism in the flaw assessment, there is a need 

to understand the crack propagation behaviour of this material in various cyclic 

loading situations and to establish suitable lower bound fracture mechanics parameters 

that can be used safely and confidently for LBB analysis.  

This investigation has been directed to understand the process of crack 

initiation in SA 333 Gr 6 steel under various types of loading situations. Generation 

and analysis of data related to (a) effect of strain rate and temperature on tensile 

properties, (b) effect of temperature in monotonic fracture behaviour and (c) nature of 

cyclic J-R curve at different test conditions, are essential to bring forward such 

understanding. 
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3.0 THE SELECTED STEEL AND ITS CHARACTERISTICS  

3.1. INTRODUCTION 

The material selected for the present investigation is ASME SA 333 Gr 6 steel. 

It is used in the fabrication of primary heat transfer (PHT) piping of the nuclear power 

plants. These components operate in the temperature range of 28-300oC. The material 

employed in such critical applications need understanding of the fracture behaviour in 

its operating temperature range. Any investigation of fracture properties of steel at 

elevated temperature a-priori needs information about its cleanliness, microstructure 

and general mechanical properties, particularly the tensile behaviour at elevated 

temperatures. The microstructural features like nature and morphology of the 

inclusions and the phases govern the macro level behaviour of a material. So it is 

imperative to know the nature of the selected steel with respect to its cleanliness, 

microstructure and the mechanical properties. 

It is well documented in the literature, that the low carbon steels show dynamic 

strain aging behaviour in the temperature range 150-450oC [2,3,37] and the occurrence 

of this phenomenon degrades the ductility and the fracture resistance of such steels [3-

7,37,47]. The phenomenon of DSA is known to be governed by the temperature and 

the strain rate during a tensile test. The influence of DSA on the fracture resistance of 

a steel would thus be controlled by the prevailing temperature and strain rates at the 

point of crack initiation. Thus it is necessary to understand the dynamic strain aging 

behaviour of the selected steel in an appropriate window of strain rate and temperature 

before any elaborate investigation of the fracture toughness of the steel is attempted. 

The aims of the investigation reported in this chapter are (i) to generate 

information about the microstructure and the cleanliness of the selected steel; (ii) 

to determine its conventional mechanical properties like hardness, tensile and 

impact toughness at ambient temperature; (iii) to examine tensile behaviour of 

the steel at and above ambient temperatures and at different strain rates and (iv) 

to understand the dynamic strain aging behaviour of the steel in the temperature 

range of 200o to 300oC at different strain rates. 
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3.2. EXPERIMENTAL 

3.2.1. Chemical Analysis 

The SA 333 Gr 6 steel used in this investigation was obtained as courtesy of 

Bhabha Atomic Research Centre, Mumbai, India. The steel was obtained in the form 

of sections of a pipe having external diameter of 406 mm and wall thickness of 32mm. 

A small piece (of dimension 25mm x 25mm x 5mm) was cut from the as received 

material and its opposite surfaces were made parallel by grinding. This sample was 

used for determining the chemical composition of the steel with the help of a 

Shimadzu Optical Emission Spectrograph (model: GVM 1014P). The nitrogen 

analysis was done using a series of cylindrical samples of 3mm diameter and 10 mm 

length. This analysis was carried out with the help of a Leo N2 Determinator (model: 

TC436). The chemical composition of the steel thus obtained is given in Table 3.1. 

Table 3.1 Chemical composition of the steel. 

Elements C Mn P S Si Ni Cr Al Cu N 

wt% 0.16 0.838 0.004 0.0014 0.19 0.04 0.06 0.008 0.043 0.0064 

3.2.2. Metallographic Specimen Preparation 

Small test coupons of approximately 10mm x 10mm x 10mm size were cut 

from the as received material for metallographic examinations. These specimens were 

first ground successively on silicon carbide abrasive papers having grit sizes between 

80 and 1200. Next the specimens were successively polished on Texemet cloth either 

using diamond paste of particle sizes of 1µm and 0.25µm or using colloidal suspension 

of beta alumina having particle sizes of 0.25µm and 0.1µm. It may be mentioned here 

that a few of the samples were subjected to hardening treatment (austenitizing at 

850oC for 30 min followed by quenching in water) prior to polishing. These samples 

were used for inclusion characterization of the steel. Samples for microstructural 

studies were etched with freshly prepared 2% nital solution. The microstructural 

examinations were carried out on two representative planes, one surface perpendicular 

to the axial and the other in the circumferential direction of the pipe section (as shown 

in Fig.3.1), using a Union Versamet-2 metallograph. The two surfaces examined will  
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Fig.3.1 Configurations of specimen surfaces used for metallographic study

udinal surface (CL plane) 

Transverse surface (LC plane) 

Length direction

Tr
an

sv
er

se
  d

ire
cti

on

Fig.3.1 Configurations of specimen surfaces used for metallographic study

udinal surface (CL plane) 

Transverse surface (LC plane) 

Length direction

Tr
an

sv
er

se
  d

ire
cti

on
udinal surface (CL plane) 

Transverse surface (LC plane) 

Length direction

udinal surface (CL plane) 

Transverse surface (LC plane) 

Length direction

Tr
an

sv
er

se
  d

ire
cti

on

 

35



be henceforth, termed as LC and CL planes. This terminology conforms to crack plane 

designations for standard fracture toughness test specimens as per ASTM E-399 [55]. 

3.2.3. Inclusion Characterization 

Inclusion characterization was carried out on water quenched and polished 

samples of both CL and LC planes (Fig.3.1). These samples were first examined using 

an optical microscope, when only a few inclusions could be observed even at high 

magnification of 1000x. Next, these specimens were examined with the help of a 

scanning electron microscope (JEOL model: 850A) at magnifications in the range of 

1000x to 5000x, when the inclusions could be revealed in detail. The nature of a 

number of inclusions was ascertained using the EDAX system of the SEM. Typical 

representative photomicrographs of a few inclusions were recorded together with their 

EDAX analyses. 

3.2.4 Metallographic Examination 

The polished and etched metallographic specimens were studied using an 

optical microscope (Union Versamet-2) as well as a SEM. These examinations were 

carried out for both CL and LC planes of the pipe at different magnifications (150-

2000x) and several representative microstructures of the specimens were recorded. In 

addition to revealing of the phases in the microstructures, the volume fraction of such 

phases, grain size and the banding index of the microstructures were also determined. 

The volume fraction of the phases was determined manually by point counting 

technique following the ASTM standard E 562-89 [56]. A 20x20 grid was 

superimposed on a microstructure viewed at 400x magnification. Random counting 

was done on 30 fields of observations to estimate the mean volume fractions of the 

phases. The volume fraction, Vf, of a phase has been calculated using the following 

expression [56]. 

 Vf  = 
P

n.Po
  (3.1) 

where  P = total number of points on a phase 

Po = number of grid points 

n = number of fields of observations 
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The amount of pearlite (Vf
P) was estimated and the volume fraction of ferrite (Vf

f) was 

evaluated as (1-Vf
P).   

The ferrite grain size was determined at 400x using random linear intercept 

method following ASTM E112-96 [57]. In this method a linear test grid is 

superimposed on the microstructure and the number of ferrite grains intercepted by the 

test line are counted. A total number of 30 such random test lines were considered for 

obtaining the average ferrite grains. The mean ferrite grain size was calculated using 

the following equation [57]. 

 L = 
Vf .LT

N   (3.2) 

where  L = the mean ferrite grain size 

Vf = volume fraction of ferrite phase  

LT = the total length of the superimposed grid lines 

N = total number of ferrite grains intercepting the test lines. 

The banding index was evaluated for both the CL and the LC planes, following 

the ASTM standard E-1268-94 [58]. The specimens were placed under the microscope 

and 50 images at 300x were captured for each type of specimen. After capturing the 

images, parallel and perpendicular grid lines of known length were drawn on each 

image and the pearlite colonies were used for counting the number of feature 

intercepts and the number of boundary intercepts. The number of feature intercepts N 

and the number of boundary intercepts P (as described in ref [58]) were counted for all 

grid lines parallel and perpendicular to the pearlite band. The average number of 

feature intercepts and the average number of boundary intercepts per unit length were 

calculated along both the directions parallel and perpendicular to the pearlite bands, as:  

.L|| = 
total no of feature intercepts counted parallel to the pearlite band

 Lt
 (3.3) 

PL|| = 
total no of boundary intercepts counted parallel to the pearlite band

 Lt
 (3.4) 

.L⊥ = 
total no of feature intercepts counted perpendicular to the pearlite band

 Lt
    (3.5) 

PL⊥ = 
total no of boundary intercepts counted perpendicular to the pearlite band

 Lt
   (3.6) 
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where,  Lt  = true test line in mm divided by magnification M 

.L|| = average number of feature intercepts per unit length parallel to the pearlite 

band 

PL||  = average number of boundary intercepts per unit length parallel to the 

pearlite band 

.L⊥ = average number of feature intercepts per unit length perpendicular to the 

pearlite band 

PL⊥  = average number of boundary intercepts per unit length perpendicular to 

the pearlite band 

The feature counting and the boundary counting were done for over 100mm of 

test line length in each of the estimations for banding index. The degree of banding 

Ω12 was calculated using the following expressions [58]. 

 Ω12 = 
.L⊥ - .L||

.L⊥ + 0.571x.L||
  (3.7) 

 Ω12 = 
PL⊥ - PL||

PL⊥ + 0.571xPL||
  (3.8) 

The average banding index was evaluated from ten sets of readings. The 

banding indices calculated from feature intercept and boundary intercept, were found 

to be equal up to second decimal places. It may be mentioned here that the images 

were captured using an image analyser (Samsun Metal Power Image Analyser ver 

2.2.05). 

3.2.5 Hardness Evaluation 

Hardness was evaluated on both CL and LC surfaces with the help of a Vickers 

Hardness Tester using a load of 20 kgf. The specimen surfaces used for hardness 

studies were polished following the procedure described in section 3.2.2 prior to 

hardness examination. At least ten indentations were taken to estimate the average 

value of hardness of the steel under investigation. 

3.2.6. Tensile Testing 

Round specimens of diameter 5mm and gauge length 25mm were fabricated 

for tensile tests following the ASTM standard E 8M-85 [59] from the as received pipe 
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section. The nominal dimensions of the tensile specimens and their orientation in the 

pipe section are shown in Fig.3.2 and in Fig.3.3. Specimens were fabricated for 

evaluating tensile properties for both axial and circumferential directions of the pipe 

section. The different orientations of the specimens will be henceforth termed as 

longitudinal and transverse as shown in Fig3.3. 

All tensile tests were performed with the help of an INSTRON (model: 8562) 

electromechanical dynamic testing system fitted with a 100kN capacity load cell. The 

machine was equipped with 8500 digital controller interfaced to a personal computer 

through IEEE 488/GPIB protocols. The tests were conducted using Flaps 5, a 

Windows based software supplied by INSTRON. The software has provision for 

controlling the test conditions like displacement rate, and data acquisition on load, 

displacement and strain in different channels. The strain was measured through an 

extensometer of 25mm gauge length, attached to the middle of the specimen length. 

About 2500~3000 data points of engineering stress, percentage strain and 

displacement were acquired in each test for post processing. The tests were conducted 

at three different displacement rates, and four different test temperatures for each of 

the specimen orientations. The details of the test variables are shown in Table 3.2. 

Three specimens were tested for each of the combination of varied test conditions. 

Table 3.2 Test variables for tensile tests. 

Orientation Displacement 
rate (mm s-1) 

Nominal strain rate 
(s-1) 

Test temperature 
(oC) 

Longitudinal 

 

Transverse 

3x10-2 

3x10-3 

3x10-4 

1.2x10-3 

1.2x10-4 

1.2x10-5 

28 

200 

250 

300 

The elevated temperature tensile tests were carried out in a three zone split type 

furnace placed around the specimen. The temperature of the specimen was monitored 

by a thermocouple tied at the centre of the test specimen. All elevated temperature 

tests were made with a temperature control of ±3oC. For measurement of specimen  
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extension at elevated temperatures, an extensometer coupler was fabricated. The 

coupler is basically an axial rod and tube assembly with the ends fabricated to grip the 

specimen at one side and to facilitate attaching an extensometer (out side the furnace) 

on its other end. A 25mm gauge length extensometer was fitted for measuring 

extension of the sample. The set up for the specimen displacement measurement is 

shown in Fig.3.4. After tying the thermocouple and the extensometer assembly to the 

specimen, the furnace was enclosed and it was powered-up to achieve the desired test 

temperature. All tests were carried out after stabilizing the test temperature for 20~30 

min. The digital data of stress, strain and actuator displacements for the tests at the 

strain rate 1.2x10-3, 1.2x10-4 and 1.2x10-5s-1 were acquired at 10, 1 and 0.1Hz 

respectively. 

3.2.7. Fractographic Examination 

The fractured surfaces were cut out carefully from the broken tensile 

specimens and were ultrasonically cleaned prior to their examination under a scanning 

electron microscope. A series of representative fractographs were recorded during 

such examinations on fractured surfaces cut from both the longitudinal and the 

transverse tensile specimens tested at 28, 200, 250 and 300oC. 

3.2.8 Impact Toughness Testing 

Standard Charpy impact specimens of size 10mm x 10mm x 55mm with 2mm 

deep V notch were machined. Specimens of orientation LC, CL and LR as per ASTM 

E-399-90 [55] guidelines were prepared. Tests were carried out at 28oC using a 

WOLPERT Instrumented Charpy Impact Testing machine as per ASTM standard E23-

94 [60]. A minimum of five specimens was tested to estimate the average CVN value 

for each orientation of the pipe section. All these tests were carried out at room 

temperature. 

3.3. RESULTS AND DISCUSSION 

3.3.1 Material Characteristics 

The chemical composition of the steel is given in Table 3.1. Repeated analyses 

did not show variations of more than two units on the last significant decimal place of  
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Fig.3.4 Set up for the displacement measurement of a tensile test 
specimen.
Fig.3.4 Set up for the displacement measurement of a tensile test 
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each elemental composition (as given in Table 3.1) and hence the analysis is 

considered reliable. The obtained composition indicates that the amount of carbon, 

manganese, phosphorous, sulphur and silicon in the investigated steel is in accordance 

with the ASTM A333 Gr 6 or ASME SA 3333 Gr 6. The steel will be henceforth 

referred to as SA333 for convenience of discussion. However, it may be mentioned at 

this stage that the investigated steel contains some minor amount of nickel, chromium, 

aluminum and copper, which are not included in the standard designation of ASTM 

A333 Gr6 or ASME SA 333 Gr6. 

A small number of inclusions of finer sizes could be detected using optical 

microscope only at high magnifications such as 1000x. Hence, inclusion rating as per 

ASTM standard E45-87 [61] procedure could not be carried out for this material. The 

longitudinal surface of the specimen shows an array of fine size inclusions inclined at 

some angle to the length of the pipe as shown in Fig.3.5. It was possible to distinguish 

the size and the morphology of the inclusions by SEM both on CL and LC planes (as 

shown in Fig.3.1) at magnifications higher than 1000x. A typical photo-micrograph of 

an elongated inclusion on CL plane is shown in Fig.3.6(a). The EDAX analysis for 

such inclusions is illustrated in Fig.3.6(b), which indicates that the inclusions are MnS 

which are normally expected in plain carbon steels. The photo-micrograph of an 

almost spherical inclusion and its EDAX analysis as obtained on the LC plane are 

given in Fig.3.7(a) and Fig.3.7(b) respectively. The EDAX results in Fig.3.7(b) 

indicate the inclusion to be of mixed type containing both oxide and sulphide. Most of 

the inclusions detected in this steel are found to be primarily of sulphide type. Only a 

few inclusions were of mixed (oxide and sulphide) type. 

Representative optical and SEM photomicrographs of the longitudinal and 

transverse sections of the pipe at different magnifications are shown in Fig.3.8, Fig.3.9 

and Fig.3.10. A series of micrographs are presented, in order to illustrate the phases 

and their distribution in the microstructure, which reveal ferrite and pearlite having 

significant degree of banding. Whereas, Fig.3.8 shows the nature of banding, the same 

has been illustrated at different magnifications in Fig.3.9 and Fig.3.10 to reveal the 

nature and distribution of the ferrite phase and the pearlite colony. The estimated 

average volume fraction of the phases, the mean ferrite grain size and the banding 

indices for the CL and LC planes are compiled in Table 3.3. Visual examination of the  
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Fig.3.5 Typical array of inclusions present in the longitudinal 
surface of  the specimen.
Fig.3.5 Typical array of inclusions present in the longitudinal 
surface of  the specimen.
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Fig.3.6(a) A typical elongated inclusion  on the longitudinal surface 
of a specimen.
Fig.3.6(a) A typical elongated inclusion  on the longitudinal surface 
of a specimen.  

 

 

 

 

 

 

 

 

 

Fig.3.6(b) The EDAX analysis  of the elongated inclusion 
shown in Fig.3.5(a)
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Fig.3.7(a) A typical globular  inclusion on the transverse surface of 
a specimen..
Fig.3.7(a) A typical globular  inclusion on the transverse surface of 
a specimen..
Fig.3.7(b) The EDAX analysis of the globular inclusion 
shown in Fig.3.6(a).
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Fig.3.7(b) The EDAX analysis of the globular inclusion 
shown in Fig.3.6(a).
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Fig.3.8(a)  Typical photo-micrograph of the longitudinal surface of a 
specimen.
Fig.3.8(a)  Typical photo-micrograph of the longitudinal surface of a 
specimen.  

 

 

 

 

 

 

 

 

Fig.3.8(b) Typical photo-micrograph of the transverse surface of a 
specimen.
Fig.3.8(b) Typical photo-micrograph of the transverse surface of a 
specimen.  
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Fig.3.9(a) Typical photo-micrograph of the longitudinal surface of a 
specimen.

50 µm

Fig.3.9(a) Typical photo-micrograph of the longitudinal surface of a 
specimen.

50 µm50 µm

 

Fig.3.9(b) Typical photo-micrograph of the transverse surface of a 
specimen.

50 µm

Fig.3.9(b) Typical photo-micrograph of the transverse surface of a 
specimen.

50 µm50 µm
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Fig.3.10(a) Typical photo-micrograph of the longitudinal 
surface of a specimen.
Fig.3.10(a) Typical photo-micrograph of the longitudinal 
surface of a specimen.  

 

 

 

 

 

 

 

 

 

Fig.3.10(b) Typical photo-micrograph of the transverse 
surface of a specimen.
Fig.3.10(b) Typical photo-micrograph of the transverse 
surface of a specimen.  
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micrographs in Fig.3.8 and Fig.3.9 indicate that the severity of banding is more in the 

CL plane than that on the LC plane. Thus, the estimated banding indices of 0.468 and 

0.358 for CL and LC planes respectively appear to be in order. The average volume 

fraction of pearlite on CL and LC planes was found to be 20.6 and 21.3 percentage, 

respectively. The theoretical calculations show that the volume fraction of ferrite Vf
P 

should be 80.8%. The differences between the Vf
P on CL and LC planes are within the 

associated standard deviations of the estimated mean value of Vf
P. The difference 

between the theoretical and experimental values is due to the presence of minor 

amount of alloying elements in the steel. The mean ferrite grain size on the CL and LC 

planes was found to be 14.5±1.2µm and 14.3±1.3µm, respectively. 

Table 3.3 Average volume fraction of pearlite, mean ferrite grain size and average 
banding index of the steel. 

Orientation Average volume fraction 
of pearlite Vf

P (%) 
Mean ferrite grain 

size, (µm) 
Average Banding 

Index Ω12 

Longitudinal 20.6±1.5 14.5±1.2 0.468 

Transverse 21.3±1.4 14.3±1.3 0.358 

The average Charpy impact toughness values of the three different specimen 

orientations namely LC, CL and LR are given in Table 3.4. The impact energy value is 

found to be minimum for specimens having CL orientation (235J); but the CVN values 

for LC and LR orientations are almost the same at around 292J. The minimum CVN 

values for specimen with CL orientation are attributed to the presence of elongated 

inclusions on the CL plane as evidenced in Fig.3.6. 

Table 3.4 Average CVN impact toughness of the steel. 

Specimen orientation CVN toughness (Joule) 

LC 294 

CL 235 

LR 291 

The average hardness of the steel was found to be 133 and 134 VHN on the CL 

and LC planes. The tensile properties of the longitudinal and the transverse specimens 
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tested at a strain rate of 1.2x10-4 s-1 at ambient temperature (28oC) are reported in 

Table 3.5. The tensile properties of the investigated steel were found to be in 

accordance with the values reported for ASTM A333 Gr 6 or ASME SA333 Gr 6 

[51,52] steel. 

Table 3.5 Mechanical properties of the steel 

Types of 
specimen 

Yield strength 
 σys,  (MPa) 

Tensile strength 
σUTS, (MPa) 

Total elongation 
et,  (%) 

Reduction in 
area RA, (%) 

Longitudinal 328±15 452±22 39.5±2 75.0±4 

Transverse 320±15 459±22 38.0±2 72.9±4 

From the routine mechanical properties and microstructural details reported 

above, it may be noticed that, the features and properties are more or less same in both 

LC and CL planes of the pipe material. Only the impact toughness in CL orientation 

shows inferior properties and in this plane, the inclusions were also observed to be 

elongated and were directionally oriented.  

3.3.2. The Tensile Behaviour at Elevated Temperature 

Tensile tests were carried out at four different temperatures and at three 

different strain rates using both longitudinal and transverse specimens as shown in 

Table 3.2. In all, there were twenty-four test conditions in which these tests were done 

and at each of these conditions three tests have been performed. Typical engineering 

stress-strain plots at the strain rate of 1.2x10-4 s-1 and at the test temperatures of 28, 

200, 250 and 300oC for longitudinal and transverse specimens are shown in Fig.3.11 

and Fig.3.12 respectively. Such engineering stress-strain plots for all the test 

conditions can be broadly classified with the codes TI, TII and TIII following 

Hertzberg [35] as: 

   TI: Elastic-Heterogeneous Plastic - Homogeneous Plastic Response 

 TII: Elastic-Heterogeneous Plastic Response 

TIII: Elastic-Homogeneous Plastic Response 

The observed nature of the stress-strain curves has been mapped in Fig.3.13 

and Fig.3.14 for longitudinal and transverse specimens respectively. At room 

temperature for both the specimen orientations, the stress-strain curves are elastic-

heterogeneous plastic-homogeneous plastic (TI) in nature. But at 200 and 250oC the  
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Fig.3.11 Typical engineering stress-strain curves of the longitudinal
specimens at the strain rate 1.2x10-4 s-1
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Fig.3.12 Typical engineering stress-strain curves of the transverse
specimens at the strain rate 1.2x10-4 sec-1
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Fig.3.13 A map showing the classification of stress-strain curves for the
longitudinal specimens at diffrent test conditions.
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Fig.3.14 A map showing the classification of stress-strain curves for the
transverse specimens at diffrent test conditions.
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stress-strain curves are of elastic heterogeneous plastic (TII) in nature at all the 

investigated strain rates for both specimen orientations. The elastic-homogeneous 

plastic response (type TIII) in deformation behaviour was obtained only at 300oC for 

the strain rate 1.2x10-3 s-1 for longitudinal specimen and for strain rates 1.2x10-3 and 

1.2x10-5s-1 for the transverse specimens. The TI and TII types of stress-strain curves 

exhibit a series of serrations, superimposed on the pre-necking regime of the curve and 

these reflect heterogeneous deformation in the material. Five major types of serrations 

in stress-strain curve namely A, B, C, D and E types have been categorized in the 

literature [62-66]. The nature of the serrations in the present stress-strain plots will be 

discussed further in the next section. 

The yield strength, (σys,) ultimate tensile strength (σuts), percentage uniform 

elongation (eu) and percentage total elongation (et) have been evaluated from the 

engineering stress-strain plots. The test conditions at which the stress–strain curves 

were found to exhibit distinct upper and lower yield point, the latter has been taken as 

the yield strength of the material. Alternatively the stress corresponding to 0.2% offset 

strain value was taken as the yield strength of the material when there were no distinct 

yield point phenomena. The maximum stress value exhibited by each stress–strain 

curve was taken as the ultimate tensile strength of the material and the strain 

corresponding to this value is considered as the percentage uniform elongation. The 

maximum strain (in percentage) from each stress–strain curves was taken as 

percentage total elongation; percentage reduction in area was estimated by measuring 

the diameter of a specimen before and after the test at the location of fracture. The 

average values of all these properties are reported in Table 3.6. The mean values of 

σys, σuts, eu, et and RA were estimated from the test results of the three specimens and 

it was noted that the individual readings were within ±5% of the mean value. 

The influence of temperature on yield strength (σys) and tensile strength (σuts) 

of the steel at the investigated strain rates are shown in Fig.3.15 and Fig.3.16, for the 

longitudinal and transverse specimens respectively. As expected, the yield strength of 

the steel was in general, found to decrease with increase in temperature for all the 

specimen conditions that were tested. The ultimate tensile strength of the material, on 

the other hand, was found to decrease marginally between the test temperatures of 28 

and 200oC, followed by a distinct increase between 200 and 300oC for the longitudinal  

 54



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 50 100 150 200 250 300

200

300

400

500

Fig.3.15.  Variation of yield (σo) and  tensile strength (σuts) with temperature
                 for the longitudinal specimens at all the investigated strain rates
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Fig.3.15.  Variation of yield (σo) and  tensile strength (σuts) with temperature
                 for the longitudinal specimens at all the investigated strain rates

Yield strength (σys)     Circle
Tensile Strength (σuts) Square 

St
re

ss
, M

Pa

Temperature, oC

  Strain rate sec-1

 1.2x10-3

 1.2x10-4

 1.2x10-5
0 50 100 150 200 250 300

200

300

400

500

Fig.3.16. Variation of yield (σys) and tensile strength (σuts) with temperature
           for the transverse specimens at all the investigated strain rates
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Fig.3.16. Variation of yield (σys) and tensile strength (σuts) with temperature
           for the transverse specimens at all the investigated strain rates
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specimens. The nature of variation of σuts with temperature for the transverse 

specimens resembles to those of the longitudinal specimens; but the change in σuts 

with temperature between 200 and 300oC does not depict a generalized trend as it has 

been observed in the longitudinal specimens. In addition, it is noted that higher strain 

rates resulted in lower σuts value for longitudinal specimens tested between 200 and 

300oC temperature, contrary to the expected trends. The influence of strain rate on σuts 

between 200 and 300oC do not provide any generalized pattern. 

The influence of temperature on uniform (eu) and total elongation (et) is shown 

in Fig.3.17 and Fig.3.18 respectively for the longitudinal specimens. Similar plots for 

the transverse specimens are shown in Fig.3.19 and Fig.3.20. The variation eu and et 

with temperature at different strain rates lead to the following inferences: 

(a) The longitudinal specimens show a general decrease in the magnitude of eu 

and et at all the strain rates with the increase in temperature from 28 to 250oC, 

there after at 300oC temperature it shows an increasing trend. The minimum 

total elongation has been observed at 250oC for the longitudinal specimen at a 

strain rate of 1.2x10-4s-1. 

(b) The magnitude of eu for transverse specimens remains almost unchanged 

between 28 and 200oC temperature at all the strain rates, but the et values show 

a decreasing trend with increase in temperature from 28 to 300oC. The 

magnitude of eu shows an increasing trend with a rise in temperature from 200 

to 300oC for the transverse specimen at a strain rate 1.2x10-3 s-1. 

(c) The magnitude of eu and et were found to increase steeply from its 

minimum value with increase in test temperature. 

(d) For longitudinal specimens the magnitude of eu and et were found to 

increase with increase in strain rates at 28 and 200oC; but such a general trend 

was not observed for the range of temperatures under investigation. The 

variation of eu and et at different strain rates for the transverse specimens also 

do not show any consistent trend. 

Over all, the decrease in the magnitude of eu and et with increase in 

temperature at a particular strain rate or that with decrease in strain rate at a particular 

temperature are opposite to what is commonly expected. It is well established that  
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Fig.3.17 Variation of uniform elongation (e
u
) with temperature for

the longitudinal specimens.
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Fig.3.18 Variation of total elongation (et) with temperature for the
longitudinal specimens.
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Fig.3.19 Variation of uniform elongation (eu) with temperature for
the transverse specimens.
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Fig.3.20 Variation of total elongation (e
u
) with temperature for the

longitudinal specimens.
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increase in test temperature or decrease in strain rates commonly enhance the ductility 

of a material [67,68]. 

The influence of temperature on reduction in area (RA) of the steel is shown in 

Fig.3.21 and Fig.3.22 for longitudinal and transverse specimens respectively at all the 

strain rates. The variation in the percentage reduction in area RA with temperature also 

shows a similar trend as that of eu and et vs temperature at all the investigated strain 

rates for the longitudinal specimens. The trends of variation of RA with temperature 

for transverse specimens do not depict any generalized pattern. In general, under the 

employed test conditions the minimum value of RA is observed in tensile tests 

conducted at 250oC  with the  only  exception  for transverse  specimen tested at 

1.2x10-4 s-1. The nature of variation of RA with test temperature and strain rates is also 

in disagreement with the conventional understanding of variation in ductility with test 

temperature and strain rate. 

The material shows 50-60 MPa increase in ultimate tensile strength (Fig.3.15) 

and a slight decrease in ductility properties with increase in test temperature from 200 

to 300oC (Fig.3.17) for all the investigated strain rates for longitudinal specimens. 

Singh et al. [5] have reported similar observations for SA333 Gr6 steel. Kim et al. [4] 

and Marschall et al. [6] have observed an increase in ultimate tensile strength and 

decrease in percentage total elongation for SA106 Gr C and SA106 Gr B steels. The 

presence of serrations in the pre-necking region of engineering stress-strain plots have 

been also reported by these authors [4,6] for SA 106 Gr C steels. The reason for such 

abnormal behaviour has been attributed to dynamic strain aging phenomena in these 

steels [4-6]. Thus the obtained tensile results in this investigation indicate that a 

dynamic strain aging, (DSA), phenomenon is taking place in this material at elevated 

temperature. 
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Fig.3.21 Variation of Reduction in Area (RA) with temperature
for the longitudinal specimen at all the strain rates.
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Fig.3.22 Variation of reduction in area (RA) with temperature for
the transverse specimen at all the strain rates
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Table 3.6 Average tensile properties of the steel under investigation 

Temperature 
(oC) 

σys 

(MPa) 
σuts 

(MPa) 
eu 

(%) 
et

 

(%) 
RA 
(%) 

Strain Rate (s-1) 

Longitudinal 

28 311 453 25.5 45.6 77.4 1.2x10-3 

200 262 405 19.0 35.5 73.5 1.2x10-3 

250 237 435 22.2 37.7 74.6 1.2x10-3 

300 228 465 22.5 37.5 73.5 1.2x10-3 

28 328 452 22.3 39.5 75.0 1.2x10-4 

200 257 429 20.0 34.0 74.5 1.2x10-4 

250 232 432 14.7 24.5 51.0 1.2x10-4 

300 205 479 23.1 38.9 73.8 1.2x10-4 

28 305 438 20.9 36.5 75.0 1.2x10-5 

200 233 444 20.0 33.3 73.3 1.2x10-5 

250 215 471 17.9 30.6 68.8 1.2x10-5 

300 193 499 19.1 37.3 76.6 1.2x10-5 

Transverse 

28 287 429 19.9 38.8 73.4 1.2x10-3 

200 234 380 19.5 31.8 72.7 1.2x10-3 

250 242 435 20.7 35.1 67.7 1.2x10-3 

300 226 420 21.1 34.0 71.3 1.2x10-3 

28 320 459 20.9 38.0 72.9 1.2x10-4 

200 275 441 21.0 32.7 66.3 1.2x10-4 

250 230 451 18.9 30.8 71.0 1.2x10-4 

300 229 483 18.3 31.7 71.7 1.2x10-4 

28 300 445 20.7 35.8 75.0 1.2x10-5 

200 240 454 20.2 33.3 69.7 1.2x10-5 

250 210 446 16.4 30.26 69.1 1.2x10-5 

300 172 450 17.1 34.81 77.2 1.2x10-5 

σys - Yield strength, σuts - Tensile strength 
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3.3.3. Dynamic Strain Aging Behaviour of the Material 

The observed increase in σuts and decrease in eu and et with increase in 

temperature, and TII type stress-strain curves, as shown in Fig.3.13 and Fig.3.14, infer 

that the steel exhibits dynamic strain aging at several conditions of tensile tests. The 

heterogeneous plastic response is marked with serrations primarily in the pre-necking 

region of the stress-strain curves. The serrated stress-strain response can occur in 

metals and alloys due to any one or a combination of the following reasons: 

(a) Interaction of moving dislocations with interstitial or substitutional atoms 

[1,39,69-72]. 

(b) Continuous mechanical twinning in hexagonal close-packed metals [35,73]. 

(c) Order-disorder transformations taking place at the test conditions [74,75]. 

(d) Phase transformations induced by stress and strain changes in the material 

[76]. 

By principle of exclusions, the observed DSA in SA 333 steel in the present 

investigation may be attributed to the interaction of moving dislocations with the 

interstitial atoms. The interaction of solute atom with mobile dislocation is described 

as follows: when sufficient amount of stress is available during tensile deformation, 

dislocations become free from the interstitial carbon and nitrogen atoms or the solute 

clusters like Mn and nitrogen [2,70,71,77], resulting in a small drop in the flow curve. 

The solute atoms are able to diffuse again to the dislocations and re-trap them causing 

an increase in the flow stress. The repeated occurrence of these two phenomenon leads 

to the formation of serrations in the pre-necking region of engineering stress-strain 

plots. During this process the plastic strain rate fluctuates around the imposed strain 

rate, because of varying dislocation density. 

An attempt was made to examine the nature of serrations obtained in various 

stress-strain curves. In order to do this, the pre-necking regions of the TII type stress-

strain curves were plotted with suitable amount of enlargements. A few representative 

enlarged curves are shown in Fig.3.23 and Fig.3.24 for longitudinal and transverse 

specimens respectively. The observed serrations in such curves were compared with 

different types of serrations reported in literature, as shown schematically in Fig.3.25. 

The schematic diagram in Fig.3.25 describes the nature of A, B, C, D and E types 

suggested by various other investigators [62-66]. Type A, B and C serrations have 

been discussed by Russel [62], Solar et al. [63], Cuddly et al [64]; whereas type D and 
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Fig.3.23 Serrations observed in the pre necking region of engineering
stress-strain curves for the longitudinal specimens
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Fig.3.24 Serrations observed in the pre necking region of engineering
stress-strain curves for the transverse specimens
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Fig.3.25 Schematic representation of five types of serrations 
reported in literature.
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 E serrations are found referred in reports by Pink et al. [65] and Wijler et al. [66]. The 

occurrence of different types of serrations is dependent upon the material and the test 

variables like temperature and strain rate. 

It was noted that both longitudinal and transverse specimens commonly exhibit 

mixed A and B type serrations in the test conditions of the present experiments. 

However, type C serrations were recorded for the longitudinal specimens tested at the 

lowest strain rate of 1.2x10-5 s-1 at all elevated temperature tests. The exception from 

the common trend was noted at 250oC for the strain rate of 1.2x10-5s-1 for transverse 

specimens; in the stress-strain curve of this specimen, the serration could be possibly 

classified as mixed A and E type. However, serrations were not observed in 

longitudinal or transverse specimens tested at room temperature. The serrations 

recorded in all the investigated stress-strain curves have been compiled in Fig.3.26 and 

Fig.3.27 respectively for longitudinal and transverse specimens. The observation of the 

mixed type A and type B serrations during the tensile tests conducted at the strain rates 

of 1.2x10-3 and 1.2x10-4s-1 and temperature range of 200-300oC, indicates the 

occurrence of discontinuous slip band propagation across the gauge length of the 

specimen [39]. The nature of the type C serrations observed in longitudinal specimens 

at the slowest strain rate of 1.2x10-5 s-1 is in agreement with the observations of some 

earlier investigators [39,64,65]. 

Type A serration is produced due to the formation and propagation of 

deformation bands across the gauge length of a specimen. It usually starts at one end 

of the specimen and propagates along the same direction across its gauge length 

[39,66,78]. These are known as locking serrations. These show an abrupt rise followed 

by a drop in stress from the general level of the stress-strain curve. These occur 

usually in the lower temperature region. Type B serration is oscillation type of 

serration. It occurs in quick succession due to discontinuous band propagation arising 

from the moving dislocations within the band. Type B serration are usually found 

accompanied by type A or type D. Type C serration is yield drops that occur below the 

general level of the flow curve. These are due to dislocation unlocking. This type of 

serration originates at lower strain rates in comparison to type A and type B serrations. 

Type E serrations appear at higher strains when the engineering stress-strain curves 

approach the ultimate tensile strength of the material. Type A serrations generally  
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Fig.3.26 A map showing the types of serration observed for the
longitudinal specimens at different test conditions.
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Fig.3.27 A map showing the types of serration observed for the
transverse specimens at different test conditions.
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change over to type E serration. The deformation band propagates with little or no 

work hardening. 

3.3.4. Effect of Strain Rate Change on DSA 

The discussion in the previous sections lead to infer that the steel under 

investigation exhibits DSA in the temperature range of 200 to 300oC. Rodriguez [39] 

has indicated that the DSA behaviour in a material should be accompanied with 

negative strain rate sensitivity. In order to confirm this phenomenon some additional 

experiments were carried out to study the tensile flow behaviour of the material using 

strain rate changes. The schematic plan of the test is portrayed in Fig.3.28. Three 

tensile tests have been carried out with changing strain rates during deformation. 

These are: (a) a test on a longitudinal specimen at ambient temperature of 28oC, (b) a 

test on a longitudinal specimen at 250oC and (c) a test on a transverse specimen at 

200oC. In all these tests the specimen was loaded at an initial strain rate of 1.2x10-5s-1, 

which, was changed to 1.2x10-3s-1 at 5% strain. Subsequently without unloading the 

specimen, the strain rates were alternated between slow (1.2x10-5s-1) and fast (1.2x10-

3s-1) rates at 5% strain interval. The results of the above three tests are shown in 

Fig.3.29, Fig.3.30 and Fig.3.31, in which the points at which strain rate alterations 

were done are marked as X1, X2, X3 and X4. 

In general when the strain rate changes from a slower to a higher value during 

tensile deformation of a material the flow curve shifts upwards [67,68], causing an 

instantaneous increase in stress. This is observed at point X1 in Fig.3.29. Such an 

increase in flow stress is associated with positive strain rate sensitivity. Similarly if the 

strain rate is changed from a faster to a slower value, a drop in the flow stress occurs, 

as illustrated at point X2 in Fig.3.29. This is also associated with positive strain rate 

sensitivity. The changes in flow stress at points X3 and point X4, for the room 

temperature test (Fig.3.29) are also in accordance with the observations made at the 

points X1 and X2. Thus it can be said that the longitudinal specimen, when, loaded in 

tension at 28oC show a positive strain rate sensitivity through out the test. 

An examination of the influence of strain rate changes at the points X1, X2, X3 

and X4 in Fig.3.30 and Fig.3.31 reveals negative strain rate sensitivity. It may be 

observed that: (a) when the strain rate is changed from a slower to a faster rate, the 

stress drops and (b) when the strain rate is changed from a faster to a slower value, the  
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Fig.3.28 Schematic plan of strain rate change tensile tests
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Fig.3.30 Engineering stress-strain plot of strain rate change test for the
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flow stress increases or at times does not alter significantly. All these phenomena are 

associated with either negative strain rate sensitivity or strain rate sensitivity 

approaching zero. Thus the tensile behaviour of the longitudinal and the transverse 

specimens tested at elevated temperatures under the influence of strain rate change is 

markedly different than that of the specimens tested at room temperature under similar 

conditions. It could, thus, be concluded that the investigated steel is not prone to DSA 

at room temperature unlike that at elevated temperatures as shown in Fig.3.13 and 

Fig.3.14. However, it can be noted from Table 3.6 and Fig.3.13 and Fig.3.14, that the 

lowest value of eu is only 11% lower than its value at ambient temperature, in the case 

of specimen tested at 250oC under strain rate of 1.2x10-4 s-1. A detailed examination of 

the fracture surfaces, discussed in next section, also does not reveal any noticeable 

changes in the fracture morphology. 

3.3.5. Study of Fracture Surfaces of The Tensile Tested Specimens 

Typical representative fractographs of the broken tensile specimens tested at 

various temperatures for, both, the longitudinal and the transverse specimens are 

shown in Fig.3.32 and Fig.3.33 respectively. The fractographs in Fig.3.32 and Fig.3.33 

indicate that the dimple sizes are slightly smaller in the case of transverse specimens. 

A possible reason for this could be an influence of the banding direction on the 

formation of dimples. In the case of longitudinal specimens the tensile loading 

direction is parallel to the bands whereas in the transverse specimens loading direction 

is at an angle to the bands. 

The features of the fracture surfaces of the longitudinal specimens tested at 

room and at elevated temperatures do not show any significant difference. The 

fractographs in Fig.3.32 also depict that morphology of the dimples on the fracture 

surfaces of longitudinal specimens is not influenced by test temperature. It can only be 

postulated that initiation of the dimples in these specimens may occur at different 

strains, but the subsequent growth of the voids require almost equal strains. Similar 

fractographic features were also observed on the broken surfaces of transverse 

specimens tested at different temperatures as shown in Fig.3.33. The fractographs 

shown in Fig.3.32 and Fig.3.33 correspond to tensile specimens tested using the 

nominal strain rate of 1.2x10-4 s-1. The fracture-features of specimens tested at the 

other two strain rates (1.2x10-3 and 1.2x10-5s-1) were also similar to that exhibited by  
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Fig.3.32 Typical representative fractographs of the longitudinal specimen tested 
at the strain rate 1.2x10-4 sec-1 at (a) 28oC, (b) 200oC, (c)250oC and (d) 300oC.

(b) 200oC

(c) 250oC

(d) 300oC

Fig.3.32 Typical representative fractographs of the longitudinal specimen tested 
at the strain rate 1.2x10-4 sec-1 at (a) 28oC, (b) 200oC, (c)250oC and (d) 300oC.

(b) 200oC

(c) 250oC

(d) 300oC
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Fig.3.33 Typical representative fractographs of the transverse specimens tested 
at the strain rate 1.2x10-4 sec-1 at (a) 28oC, (b) 200oC,(c) 250oC and (d) 300oC.

(a) 28oC

(b) 200oC

(c) 250oC

(d) 300oC

Fig.3.33 Typical representative fractographs of the transverse specimens tested 
at the strain rate 1.2x10-4 sec-1 at (a) 28oC, (b) 200oC,(c) 250oC and (d) 300oC.
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Fig.3.32 and Fig.3.33. It may be inferred that through DSA affects the tensile 

properties of the steel its influence on the mechanism of crack propagation is not 

detectable by qualitative fractography. 

3.4. CONCLUSIONS 

The following major conclusions can be drawn from the investigations carried out 

in this chapter. 

1. The chemical analysis of the investigated steel confirms that it belongs to be ASME 

SA 333 Gr 6 variety. Metallographic examinations revealed the steel to contain low 

amount of inclusions but presence of several elongated MnS are detected along the 

length of the pipe. The microstructure of the steel exhibits ferrite and pearlite, having 

good degree of banding. The average banding index is found to be 0.468 and 0.358 for 

the longitudinal and the transverse specimens respectively. The mean ferrite grain size 

of the steel is 14.4±1.2µm. 

2. The yield strength, tensile strength and percentage elongation of the material are in 

accordance with the requirements of ASME SA 333 Gr 6 steel. 

3. The steel exhibits dynamic strain aging in the temperature range of 200 to 300oC 

and within the strain rate ranges of 1.2x10-3 to 1.2x10-5s-1. The occurrence of dynamic 

strain aging is found to be associated with increase in tensile strength and decrease in 

ductility. 

4. Strain rate change tests show that room temperature tensile flow is associated with 

positive strain rate sensitivity, whereas, such flow at elevated temperature is associated 

with either zero or negative strain rate sensitivity. 

5. The serrations in the heterogeneous regime of the tensile flow curves were usually 

found to be as a mixture of type A plus type B. 
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4.0 MONOTONIC FRACTURE BEHAVIOUR OF THE STEEL 

4.1. INTRODUCTION 

The integrity of the primary heat transfer piping system of nuclear power 

plants in which the selected steel is used is commonly assessed using Leak Before 

Break (LBB) concepts. The LBB approach using fracture mechanics principles 

attempts to ensure that no catastrophic rupture would occur in an engineering 

component without prior indication of detectable leakage. In order to encompass 

fracture mechanics principles in such component integrity program one requires 

information and understanding about the fracture behaviour of a material in different 

experimental conditions. This chapter deals with studies related to crack initiation 

toughness of the SA 333 steel in monotonic loading condition. 

The plane strain fracture toughness KIC, cannot be used for characterizing the 

fracture toughness of the selected low carbon steel having moderate strength and good 

ductility, because the maximum thickness of the CT specimens that can be fabricated 

from the available form is only 25mm. A rough estimate reveals that the thickness 

requirement would be around 45mm. For characterizing the steel thus one has to 

estimate its fracture toughness criteria using the approach of elastic plastic fracture 

mechanics such as J-integral or CTOD [68,79]. The J-integral fracture criterion is 

currently popular and is used for the LBB analysis of the piping systems. Hence in the 

present investigation, attempts have been directed to study the fracture behaviour of 

the steel using J-integral analysis. 

The steel SA 333 is usually exposed to a temperature range of 28 to 300oC in 

its service life. It has been already discussed in the previous chapter that the steel has a 

tendency to exhibit dynamic strain ageing (DSA) in the temperature range of 200-

300oC. The occurrence of DSA is known to degrade fracture initiation toughness and 

the resistance to crack propagation in several materials [3-5,7,37,42-44,46,47,49,50]. 

The only exception to this trend has been observed by Srinivas et al. for Armco iron 

[48]. The experimental evidences gathered by the previous investigators indicate that 

low carbon steels, which are susceptible to DSA, exhibit increased strength and 

decreased fracture resistance in the temperature range where DSA is operative, in 
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comparison to their corresponding values at room temperature. Thus it is considered in 

this investigation that the fracture toughness value of the selected SA 333 steel needs 

to be systematically examined in its service temperature range of 200-300oC. 

Additionally, since the steel shows banding, it is important to generate information 

related to the effect of specimen-orientation on J-integral based fracture criteria. 

The objectives in this part of investigation are thus: (i) to determine the 

fracture toughness of the selected steel using J-integral analysis, (ii) to examine 

the effect of specimen orientation on the fracture behaviour of the steel and (iii) 

to understand the fracture behaviour of the steel at elevated temperature vis-a-vis 

that at ambient temperature. 

4.2. EXPERIMENTAL 

4.2.1. Specimen Preparation 

The fracture toughness tests in this investigation were planned on compact 

tension specimens on two different orientations. Considering the available form of the 

material, standard 1CT specimens were machined following the guidelines of ASTM 

E 399-90 [55], in two orientations, LC and CL of the crack plane. Typical 

configuration of a specimen is shown in Fig.4.1 and the positions of the specimen 

blanks for the preparation of the two types of specimens has already been shown in 

Fig.3.3. The designed dimensions of the specimens were; thickness (B) = 25mm, width 

(W) = 50mm and machine notch length (aN) = 15mm. The dimensions of the 

specimens used in this investigation are shown in Table 4.1. 

Fatigue pre-cracking of the CT specimens was carried out at room temperature 

in decreasing ∆K mode as described in ASTM standard E 647 [80] using a commercial 

software (Advanced Fatigue Crack Propagation, AFCP) supplied by INSTRON Ltd 

U.K. The crack lengths were measured by compliance technique using a COD gauge 

fitted on the load line of the specimen. The software permitted on-line monitoring of 

the crack length (a), stress intensity factor range (∆K) and the crack growth rate per 

cycle, da/dN. All pre-cracking experiments were carried out at a stress ratio of R = 0.1 

using a frequency of 15Hz and with a starting ∆K between 25 and 28MPa√m. The 

magnitude of ∆K was decreased as per the expression ∆K=∆Koexp{c(a-ao)}, where the  
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value of 'c' was taken as -0.08. All specimens were pre-cracked to achieve a total crack 

length of approximately 25mm, which corresponds to a/W ≈ 0.5. The magnitude of ∆K 

achieved at the end of precracking was kept between 16~18 MPa√m in all the 

specimens. A typical plot of ∆K vs. crack length as obtained during the fatigue pre-

cracking experiments is shown in Fig.4.2. The total crack lengths ao (including fatigue 

pre-crack) and the terminal ∆K value at the end of pre-cracking for each specimen are 

given in Table 4.1. The pre-cracked specimens were provided with a side groove of 

20% of the specimen-thickness. The side grooving was carried out by keeping a notch 

angle of 60o to a depth of approximately 2.5mm on each side of the specimen. This 

was done to enhance the stress tri-axialty at the crack tip and to enhance confidence 

level in the post–test measurement of ∆a by optical means. The net thickness (BN) of 

all the specimens is also shown in Table 4.1. 

Table 4.1. Details of the tested specimens dimensions 

Specimen Dimensions Sl.
No 

Specimen 
Code W 

(mm) 
B 

(mm) 
aN 

(mm) 

ao 

(mm) 
∆K# 

(MPa√m) 
BN 

(mm) 

1. LC1 49.84 25.00 15.8 25.16 16.62 19.60 

2 LC2 50.22 25.00 15.5 25.11 16.51 19.98 

3. LC3 50.18 25.02 16.4 25.01 16.25 20.08 

4. LC4 50.16 25.04 15.6 25.08 16.34 19.85 

5. CL1 50.18 25.04 16.5 25.10 16.68 19.82 

6. CL2 50.05 25.05 15.4 25.02 16.23 19.87 

7. CL3 50.01 24.94 15.4 24.96 16.07 19.85 

8. CL4 50.13 25.03 15.8 25.06 16.15 19.80 
∆K# = ∆K at the end of pre-cracking, W = width of the specimen, 
B = total thickness of the specimen, BN = net thickness of the specimen 
 aN = machined notch length of the specimen, ao = crack length after pre-cracking,  

4.2.2. Fracture Toughness Testing 

The estimation of J-integral values of the fabricated specimens was carried out 

using an INSTRON (model: 8562) machine as described earlier (§ section 3.2.6). The 

single specimen unloading compliance technique has been used for evaluation of J-

integral fracture toughness. In this method the crack lengths are determined from 

elastic unloading compliance measurements. This is done by carrying out a series of  
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sequential unloading and reloading during the test, the interruptions being made in a 

manner that these are almost equally spaced along the load versus displacement 

record. These experiments have been carried out following the ASTM E 813 [81] 

standard; (its current designation is E-1820 [18]) 

In the single specimen J-integral tests unloading should not exceed more than 

50% (§ 18) of the current load value and hence design and control of the test 

procedure is important. Some initial trial experiments indicated that a specific actuator 

displacement control for the selected steel could lead to the desired test procedure. 

This control consisted of loading a specimen to a level of 0.3mm, unloading through 

0.15mm, reloading through 0.15mm and then repeating the sequence till an 

appreciable load drop was noticed on the load displacement plot. A schematic 

representation of the variation of displacement with time used for the present tests is 

shown in Fig.4.3. The displacement cycles were carried out using an actuator rate of 

8.3x10-3 mm s-1. The tests were controlled through a computer attached to the 

machine. The actuator displacement, load and the load line displacement (LLD), were 

recorded continuously through out the test at a frequency of 2Hz. The magnitude of 

LLD was monitored by a crack opening displacement (COD) gauge attached to the 

specimen. A minimum of approximately 35 data points of load-LLD was collected 

from the unloading part of the loading sequence for crack length calculations. A 

typical load displacement plot for a specimen tested at room temperature is shown in 

Fig.4.4. 

The elevated temperature J-R- tests were carried out in an INSTRON split 

furnace. After mounting a CT specimen in its grips on the loading frame, the furnace 

was brought to position around the specimen, and was switched on. The loading on a 

specimen was started only after achieving the desired temperature and stabilizing it for 

30 min. The temperature of the furnace was controlled by a three zone digital 

controller. A chromel-alumel thermocouple was tied on the specimen in a manner so 

that the temperature at the notch tip can be recorded. The temperature of the specimen 

during a test was monitored via this thermocouple. The J-R tests were carried out at 

three different temperatures 200, 250 and 300oC in addition to the tests carried out at 

the ambient temperature of 28oC. 
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Owing to the non-availability of a high temperature COD gauge of large travel the 

load line displacement (LLD) of the specimens (tested at elevated temperatures) were 

calculated from the actuator displacement data using a suitable calibration following 

the procedure suggested in ASTM E 1820 [18]. For the calibration a dummy specimen 

was loaded to 150% of the expected load on the test specimen. The recorded load-

position data of the dummy specimen were subtracted from that of displacement of the 

actual specimen at the corresponding loads, to obtain the true load-load line data for 

the latter. It may be mentioned at this stage that the dummy specimen was fabricated 

from the same material with identical dimensions to those of the actual specimens with 

two specific differences. The dummy specimen was un-notched and was without any 

side grooving. The obtained displacement on the dummy specimen corresponds to the 

elastic compliance of the loading train and also accounts for the indentation of the 

loading pins on the specimen holes. 

The method of obtaining load-LLD data is further illustrated using a schematic 

diagram in Fig.4.5. The load-displacement record of the dummy specimen is denoted 

here by the line OA and that for a test specimen is represented by the curve OBC. The 

displacement recorded in the curve OBC is due to that of the specimen as well as due 

to the loading train. The displacement values at each load on the curve OBC was 

reduced by the displacement for the corresponding load along OA to get the actual 

load line displacement of the specimen. The curve ODE represents the effective load-

load line displacement of the test specimen. Using the above method of correction the 

experimental results of a specimen during a J-R test are shown in Fig.4.6. In this 

figure, both, the LLD measured employing a COD gauge and the actuator 

displacement corrected for LLD plots are exhibited. It may be seen that both the plots 

virtually lie over each other and hence one can analyse the load-displacement data for 

J-R curves of the selected material without introducing any appreciable error. In the 

present investigation all the elevated temperature test data were corrected prior to 

constructing the J-R curves. 

The specimens, after the J-integral tests, were post fatigue cracked. The initial 

and the final crack lengths were measured as recommended in the ASTM standard 

[18] using a travelling microscope, and these values were then compared with the 

crack lengths estimated through unloading compliance technique. The magnitudes of 

the optically measured crack lengths were found to be within ±0.05mm of that  
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calculated by compliance crack length (CCL) relation as discussed next. This 

procedure was followed for all the tested specimens. 

4.2.3 Generation of J-R curve and evaluation of Jc 

The experimental data obtained from the fracture toughness tests were 

analysed following the recommendations of ASTM standard E1820 [18]. The load vs. 

LLD data obtained from the tests were analysed to compute the magnitude of crack 

extension (∆a) and the corresponding J integral value at each unloading sequence. 

The slope of each unloading path was calculated by linear regression analysis. The 

inverse of the slope yielded the compliance (Ci) of the specimen corresponding to the 

load from which the unloading has been carried out. The obtained Ci–values were 

corrected for the specimen rotation using the following expression to get the corrected 

compliance (Cci) of the specimen at that particular load [18]. 

 Cci = 
Ci





H*

R sinθ-cosθ 



D

Rsinθ-cosθ
 (4.1) 

where H* = initial half-span of the load points (centre of pin holes) 

R = radius of rotation of the crack centre line, (W+a)/2 

D = one half of the initial distance between the displacement measurement 

points 

θ =angle of rotation of a rigid body element about the unbroken midsection line, 

or 

θ =sin-1[(dm/2+D)/(D2+R2)1/2]-tan-1(D/R),  

dm=total measured load-line displacement. 

The crack length (ai) at this point of interest was next estimated using the expression 

suggested by Hudak et. al. [82]. 

ai
W = 1.000196-4.06319Ux + 11.242Ux

2 – 106.043 Ux
3 + 464.335Ux

4 – 650.677Ux
5

 (4.2) 

where                Ux = 
1

(BeE'Cci)½+1     (4.3) 

Be = Effective thickness of the specimen  
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                = B – [(B-BN)2

B ]    (4.4) 

            E'= 
E

(1-ν2)      (4.5) 

W =width of the specimen 

B = total thickness of the specimen 

BN = net thickness of the specimen 
∆a = ai-ao 

The magnitude of J is the sum of its elastic and plastic component denoted by Je and 

Jpl. The elastic component of J was calculated using the equation: 

 Je = 
Ki

2(1-ν2)
E      (4.6) 

where Ki is the elastic stress intensity parameter evaluated using the expression given 

below [18] 

 Ki = [ Pi
(BBNW)1/2]f(

ai
W)    (4.7) 

where, 

f(
ai
W)= 

( )(2+ai/W)(0.886+4.64(ai/W)-13.32(ai/W)2 +14.72(ai/W)3-5.6(ai/W)4)
(1-ai/W)3/2        (4.8) 

The magnitude of Jpl was calculated by considering only load vs plastic load 

line displacement. In order to obtain the latter, the elastic part of displacement at 

different loads was first calculated from the slope of the initial load-LLD diagram. A 

simple subtraction of the elastic component from the total displacement yielded the 

plastic part of LLD. The area under the load vs plastic LLD data from the start of the 

test to the load of interest was calculated to obtain the magnitude of Jpl. This was done 

by using the expression [18]: 

                 Jpl(i) = 



Jpl(i-1) + 

η(i-1)(Apl(i)-Apl(i-1))
b(i-1)BN

  



1 - 

γ(i-1)(ai-a(i-1))
b(i-1)

   (4.9) 

where   Apl(i)-Apl(i-1) = incremental plastic area 

η(i-1) = 2.0+0.522.b(i-1)/W 

 γ(i-1) = 1.0 + 0.76.b(i-1)/W 
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The obtained values of J and the corresponding crack extension ∆a were plotted to get 

the J- ∆a curves of the material in various test conditions. 

4.2.4 Fractography 

The end of the ductile crack extension during loading of the specimens, 

subjected to J-integral test, was marked by post fatigue cracking, and then the 

specimens were loaded to fracture. The fractured surfaces were ultrasonically cleaned 

and examined using a scanning electron microscope. This was done to record the 

interesting features of stable crack extension as well as to understand the mode of 

failure. 

4.3. RESULT AND DISCUSSION 

In this section the procedure employed to evaluate the critical value of J is first 

presented. The estimated critical values of J are next discussed in two subsections 

elucidating the fracture behaviour of the material at ambient and at elevated 

temperatures. The effect of specimen orientation on the J-R curves is also discussed 

along with the effect of temperature on fracture behaviour of the investigated steel. 

4.3.1 Determination of the Critical J-integral Fracture toughness 

A typical J-R curve (a plot of J against ∆a) for the specimen LC1 is shown in 

Fig.4.7. Initially attempts were made to evaluate tentative fracture toughness JQ, value 

by conventional method, which consists of locating the intercept of a theoretical 

blunting line with the J-R curve. The equation of the blunting line as suggested in the 

ASTM standard E-813-89 is [81]: 

 J = m.σo.∆a (4.12) 

where, the value of m is taken as 2. 

The parameter σo is the flow stress of the material at the test temperature and 

was taken as (σys+σuts)/2. The values of σys and σuts have been already reported in 

Table 3.6. The values of σys and σuts were taken from the results of tensile tests carried 

out at the actuator displacement rate 3x10-3mms-1. The ASTM blunting line for the 

specimen LC1 was computed and is shown in Fig.4.7. However, this line (in Fig.4.7) 

does not intersect the experimental J-R curve. Similar observations were also made for  
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the other tested specimens as listed in Table 4.2. These observations are in following 

the results reported by several earlier investigators on high toughness materials [83-

86]. In order to estimate the JQ values, an experimental blunting line was then drawn 

considering the initial linear portion of J vs. ∆a data for each of the specimens. The 

slopes of such blunting lines were estimated, and the values of m were calculated from 

the slope values using the corresponding value of σo. 

A line parallel to the experimental blunting line at ∆a = 0.2mm was next 

constructed. The intersection of this offset line with the fitted J-R curve was 

considered as the critical value of J, i.e. JQ. In order to fit the power law equation for 

J-R curve, the experimental points of J vs. ∆a lying between two exclusion lines were 

considered. The exclusion lines were constructed parallel to the experimental blunting 

line at ∆a-offset values of 0.15 and 1.5mm following the ASTM standard E813. The 

experimental points between the two exclusion lines were then fitted to a power law 

equation of the form [81]: 

 J = C1(∆a)C2  (4.13) 

where C1 and C2 are material constants at the test conditions. 

Two typical evaluations of JQ for specimens having LC and CL orientations are 

shown in Fig.4.8(a) and Fig.4.8(b) respectively. Estimations of JQ for the other 

specimens were also made in a similar manner. The results of C1, C2, JQC and m are 

shown in Table 4.3. The estimated JQ values were next examined for the validity of 

referring these as JC/JIC as per ASTM standard E813-89. The validity criterion states 

that the thickness (B) and the remaining ligament (bo) of the specimen should be 

greater than 25(JQ/σo). A typical calculation indicates the thickness requirement to be 

43.3mm for the specimen LC1 considering JQ = 674.5kJ/m2 and σo = 389.5MPa. This 

thickness is more than the thickness of the tested specimen and even that of the 

available maximum thickness of the PHT pipe. Hence the evaluated JQ value for this 

specimen cannot be referred as JC/JIC as per ASTM standard E813-89. Similar results 

(Table 4.4) were obtained when the JQ values for the other specimens were subjected 

to the validity test. The wall thickness of the PHT pipe, thus, does not permit one to 

fabricate specimens for determining JC/JIC of the steel. For convenience, the JQ values  
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estimated in this investigation are considered as the critical fracture toughness criterion 

of the material, and are denoted as JQC in further discussion. 

The crack growth resistance parameter dJ/da is the slope of the linear 

regression line of J and ∆a data points. Here the data points lying between the crack 

extension of 0.2mm and 6.2 mm (i.e. 25% of the remaining ligament) has been 

considered for linear regression analysis as suggested by Newman et al. [87]. The 

magnitudes of dJ/da are also included in Table 4.3. 

Table 4.3 Fracture toughness parameters of the investigated steel 

Specimen 
code 

Temp.oC C1 C2 JQC 
kJ/m2 

m dJ/da 
MJ/m3 

LC1 28 1351.5 0.758 674.5 9.73 1088.51 

LC2 200 891.6 0.559 530.0 8.04 489.71 

LC3 250 805.2 0.605 446.8 6.63 466.10 

LC4 300 887.8 0.552 532.2 7.28 484.58 

CL1 28 961.7 0.562 567.5 6.92 534.67 

CL2 200 687.8 0.515 423.6 5.14 340.05 

CL3 250 823.3 0.468 377.2 5.62 319.42 

CL4 300 701.8 0.559 401.2 5.45 365.12 

Table 4.4. Thickness validity criteria of the specimens for fracture toughness test 

Specimen 
code 

Temp.oC σo 
(MPa) 

JQC 
kJ/m2 

B (mm) 25(JQC/σo) 

LC1 28 389 674.5 25.00 43.3 

LC2 200 358 530.0 25.00 37.1 

LC3 250 341 446.8 25.02 32.8 

LC4 300 354 532.2 25.04 37.6 

CL1 28 390 567.5 25.04 36.4 

CL2 200 343 423.6 25.05 30.9 

CL3 250 332 377.2 24.94 28.4 

CL4 300 342 401.2 25.03 29.3 

σo = flow stress, JQC = critical value of J,  
B = specimen thickness, and 25(JQC/σo) = thickness criterion. 
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4.3.2 J Integral Fracture Toughness at Room Temperature 

The estimated J-integral fracture toughness values of the steel at room 
temperature are 674.5 and 567.5 kJ/m2 (§ Table 4.3) for specimens with LC and CL 
orientations respectively. Singh et al. [5] and Marshall et al. [88] have earlier studied J 
resistance of similar materials. The obtained values of JQC are found to be in excellent 
agreement with the values reported by Singh et al., but are significantly higher than 
those reported by Marschall et al. The latter investigators [88] have reported an 
average value of fracture initiation toughness for 1T CT specimens of SA 333 Gr. 6 
steel as 325 kJ/m2. The determination of JQC by Singh et al. and by the present author 
is based on unloading compliance method to obtain J-R curve, whereas fracture 
initiation toughness by Marschall et al. [88] has been detected by Direct Current 
Potential Difference (DCPD) method. In the DCPD technique fracture initiation 
toughness is determined from the point of deviation of an initial linear region of a plot 
between electric potential vs. displacement (Fig.4.9). The displacement value at the 
point of deviation (as marked in Fig.4.9) is next used to obtain the corresponding load, 
from which the magnitude of Ji is calculated. It can thus be inferred that the difference 
in the reported [88] values of Ji and the present estimated JQC is due to the different 
types of measurement, apart from the possibility of minor variations in the material 
characteristics used in these investigations. 

In order to understand the difference in the values of JQC obtained in this 
investigation and that by Marschall et al. [88], the fracture surfaces of the specimen 
LC1 were observed in SEM. A typical representative photograph of the initial region 
of the ductile crack extension is shown in Fig.4.10. The fatigue pre-cracked region is 
found to be followed by an expanse of stretch zone (SZ), which in turn is followed by 
ridges of ductile crack extension. But another dark region depicting the characteristics 
of stretch zone is found to follow the ductile crack extension (Fig.4.10). The observed 
nature of the stretch zone is thus of unusual type, and it is difficult to unambiguously 
estimate the width of the stretch zone and further stable crack initiation toughness. 

The width of a stretch zone (SZW) gives indication about the fracture initiation 
toughness of a material [84-86,89,90]. An attempt was made to evaluate the SZW of 
LC1 and CL1 specimens. Measurements were done on a series of fractographs 
representing almost the entire stretch zone region across the specimen thickness 
considering (i) the first expanse of stretching as well as (ii) the entire region of the SZ 
incorporating the inter-laid ridges of ductile crack extension. If only the first expanse  
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Fig.4.9 Load vs.displacement and vs. d-c electric potential data for SA 333 Gr 6 steel to 
illustrate determination of crack initiation at point B [88]. 
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Fig.4.10 Typical SEM fractograph showing alternation stretch and void 
coalescence ahead of the fatigue pre-crack. 
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of stretching was considered, the average value of SZW comes out to be 219±27 µm; 

but if the entire dark region including the ridges of ductile crack extension is 

considered its value comes out to be 410±18 µm for LC specimen. Thus the SZW is 

not uniform and its variation could be of the order of 10-20%. The average value of 

SZW comes out to be 213±27 µm for CL specimen. 

Fracture initiation toughness can be evaluated from the J-R curve by vertical 

intercept at ∆a = SZW on J-∆a plot as shown in Fig.4.8(a). The values of fracture 

initiation toughness (JSZW) are found to be 441 and 696 kJ/m2 for first and total 

expanse of SZW values of 219 and 410 µm respectively. The value of JSZW for SZW = 

219 µm is found to be higher than the value of Ji reported by Marschall et al. [88], 

whereas the value of JSZW for SZW = 410 µm can be considered closer to the JQC 

value evaluated in the present investigation. The difference in the values of fracture 

initiation toughness (Ji) and critical fracture toughness (JIC) is schematically illustrated 

in Fig.4.11. The estimation of Ji reflects the start of physical crack extension and Jc or 

JIC inherently allows for some physical crack growth. The present observation indicate 

that in the selected steel, measuring SZW for identifying critical J also yields an 

ambiguous value. The possibility is that Ji can be calculated either from the initial 

stretch of SZW or from the total magnitude of SZW intermixed with regions of ductile 

stretching. The former estimation leads to a value of Ji close to the magnitude 

predicted by DCPD technique [88]. On the other hand, the magnitude of Ji estimated 

using the total stretch of SZW is closer to the value of JQC. Hence it can be inferred 

that DCPD technique yields fracture initiation toughness, which corresponds to the 

initial stretch zone whereas the estimated JQC takes account of the complete stretch of 

SZW. The value of JSZW for 213 µm SZW is 382 kJ/m2 for CL specimen and is lower 

than the LC specimen. 

The magnitudes of the crack growth resistance parameter i.e. dJ/da was 

evaluated from the slope of the linear regression analysis of data points lying between 

∆a = 0.2 and 6.2mm (i.e. 25% of the remaining ligament). In case of the LC specimen 

only 1.5mm crack growth could be recorded for the maximum available travel (10mm) 

of the employed COD gauge. In case of the CL specimen the crack extension was 

found to be 2.5mm for the same extent of the COD gauge. The values of dJ/da were 

found to be 1088.5 and 534.7 MJ/m3 for LC and CL specimens respectively. 
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A comparison of J-R curves at room temperature along two orientations is given in 

Fig.4.12. 

The obtained results related to the fracture behaviour of LC and CL specimens 

(§ Table 4.3, Fig.4.12) indicate that fracture toughness (JQC) and the crack growth 

resistance (dJ/da) of the LC specimen are considerably higher than that of the CL 

specimen. The magnitude of JQC for LC specimen is almost 20% higher than that of 

CL specimens and the value of dJ/da for LC specimen is almost double than that of 

CL specimen. The difference in the fracture behaviour of the steel along LC and CL 

orientations can be attributed to the synergistic effect of the following 

(a) The morphology of the inclusions along the crack propagation planes of LC and 

CL specimens is different. The inclusions were found elongated along the crack 

propagation plane of CL specimens unlike that in LC specimens. This has been 

illustrated earlier in Fig.3.6. 

(b) The inclusions (Fig.3.5) were found to be in arrays at an angle to the pipe length 

axis. 

(c) The microstructure of the steel was banded. The banding indices on the crack 

planes of LC and CL specimens are 0.358 and 0.468 (Table 3.3) respectively. 

Marshall et al. [88] have reported that the morphology and preferred 

orientation of the inclusions on the crack plane of CL specimens facilitate nucleation 

and coalescence of voids during crack propagation. It is considered here that this 

micro mechanism of ductile fracture is operative here in addition to the fact that the 

process of initiation, growth and coalescence of voids also gets influenced by the 

banding index. 

4.3.3 Fracture Toughness at Elevated Temperature 

It has been mentioned earlier that the selected steel is commonly used in the 

temperature range of 200-300oC. Hence the elevated temperature fracture behaviour of 

the steel was characterised at three temperatures, viz., 200, 250 and 300oC pertaining 

to this temperature range. The J-R curves of specimens with LC and CL orientations at 

these temperatures are shown in Fig.4.13(a) and Fig.4.13(b) respectively. The room 

temperature J-R curves for these two orientations are also superimposed in these 

figures. The results in Fig.4.13(a) and Fig.4.13(b) indicate: (a) the estimated J-R 

curves at elevated temperatures lie below the one obtained at 28oC, (b) up to about  
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0.2mm of crack extension, elevated temperature J-R curves are almost identical, (c) for 

∆a >0.2 mm, the J-R curve at 250oC is inferior amongst all the estimated J-R curves 

for both specimens with LC and CL orientations. The magnitudes of fracture 

toughness parameters JQC, m and dJ/da for all the specimens tested at elevated 

temperatures have been estimated (§ section 4.3.1) and are shown earlier in Table 4.3. 

In order to understand the influence of temperature on the fracture initiation 

toughness and the crack propagation resistance, the magnitudes of JQC and dJ/da were 

plotted against the test temperatures. These plots are shown in Fig.4.14(a) and 

Fig.4.14(b). It may be observed from Fig.4.14(a) that JQC decreases steeply with 

increase in test temperature up to 250oC, beyond which it appears to increase. The 

results in Fig.4.14(a) also indicate that (a) fracture initiation toughness of CL 

specimens are lower at all test temperatures compared to that of LC specimens and (b) 

the decrease in fracture initiation toughness between 28 and 250oC for both types of 

specimens are approximately 34%. (c) Between 250oC and 300oC, the increase in 

toughness is about 86 and 24kJ/m2 for LC and CL specimens respectively. 

The nature of variation of crack propagation resistance with temperature for 

both types of specimens are shown in Fig.4.14(b). Here also one finds that dJ/da 

sharply decreases from 28 to 200oC and attains a minimum at 250oC. But the variation 

of dJ/da between 200 to 300oC is subtle in nature compared to the variation of JQC in 

the identical temperature domain. It may be mentioned at this stage that the drop of 

dJ/da from 28 to 200oC is 57% for LC specimen and 40% for CL specimens. Other 

researchers have also reported similar decrease in fracture resistance of the material 

due to dynamic strain aging as summarised in Table 2.3 [3,4,40-47]. Singh et al. [5] 

observed minor difference in J-R curves of SA 333 Gr 6 steel in the temperature range 

28o to 300oC. Marschal et al. [6] have also reported drop in the J-R curve at 288oC as 

compared to that of room temperature J-R curve for ASTM A 106 Grade B low carbon 

steel. 

The nature of variation of JQC with temperature was found to be analogous to 

the variation of percentage uniform elongation and percentage total elongation with 

temperature (§ Fig.3.12). The nature of variation of elongation of the steel with 

temperature has been attributed to dynamic strain aging; hence the specific variation of 

JQC with temperature for this steel can also be attributed to the same phenomena. In  
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order to substantiate this fact, indirect estimates of fracture initiation toughness for this 

selected steel were made from the tensile properties and were compared with their 

experimental values. One can find several empirical expressions [91-97] relating 

fracture toughness and tensile properties of the materials. Amongst these the one 

suggested by Hahn and Rosenfield [91] and that by Sivaprasad et al. [97] are 

convenient to deal with. The expression suggested by Hahn and Rosenfield relates 

plain strain fracture toughness with tensile properties where as the relationship one 

suggested by Sivaprasad et al. is between J integral fracture toughness and tensile 

properties. The expression suggested by Sivaprasad et al. appears appropriate to 

evaluate indirect fracture toughness of the material from tensile properties. 

The relationship between J-integral fracture toughness and tensile properties is 

[97] 

Jcal = 2Cλ(εu)2εfσo     (4.14) 

where,    C = a constant = 0.025m 

λ = slope of J-δ curve 

εu = True uniform elongation 

 εf  = true fracture strain 

σo  = flow stress of the material. 

The value of λ was obtained from the experimental J-δ curves for specimens tested at 

different temperatures. The tensile properties εu, εf and σo were taken from Table 3.6 

The magnitude of σo was taken as (σys+σuts)/2. It may be mentioned at this stage that 

the tensile properties taken for these calculations correspond to the tensile tests carried 

out at the strain rate 1.2x10-4s-1. Initial estimates of Jcal using equation (4.14) indicated 

a large difference between the calculated and the experimental values. This large 

difference was traced to the use of εf in equation (4.14). Hahn and Rosenfield have 

suggested “fracture strain” in such expressions be considered as εf/3. Replacing  εf by 

εf/3 and computing Jcal, it was noted that the theoretical estimates are in reasonable 

agreement with the experimental values. A plot of JQC against Jcal is presented in 

Fig.4.15. It is obvious from this figure that JQC corresponds closely to the empirical 

estimates of Jcal. Hence it can be concluded that the phenomenon responsible to 

influence tensile properties at elevated temperature also influences the fracture  
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initiation toughness at elevated temperatures. Thus it can be inferred that the obtained 

variation of JQC with temperature is due to dynamic strain aging. 

The mechanism responsible for lower fracture initiation toughness at elevated 

temperatures was a priori searched for in terms of the nature of stretch zone. Clear 

demarcation of stretch zone in specimen tested at elevated temperatures was found to 

be difficult because of oxide layer. But some interrupted domains could be 

photographed. Two typical stretch zone configurations in LC specimen tested at 200 

and 250oC are shown in Fig.4.16 and Fig.4.17. A comparison of this stretch zone with 

the one observed in specimens tested at room temperature (Fig.4.10) indicates distinct 

difference. The expanse of stretch zone at elevated temperature is not interrupted by 

ridges of ductile crack extension unlike that has been observed for LC1 specimen 

tested at 28oC (in Fig.4.10). It is thus considered that the absence of re-toughening of 

the crack tip, which increases the apparent toughness of the material at room 

temperature is the cause to reflect lower toughness at elevated temperatures. The DSA 

can be presumed to have altered the crack tip re-sharpening mechanism. However no 

correlation has been sought for between indirect estimates of JSZW from stretch zone 

width and the magnitudes of JQC for specimens tested at elevated temperatures because 

of the difficulty in reasonable estimation of SZW as discussed earlier. 

The fracture surfaces of the specimens (both LC and CL type) tested at 

different temperatures were examined to assess the mechanism of crack propagation. 

Some typical fractographs are shown in Fig.4.18 and Fig.4.19 for specimens with LC 

and CL orientations. The crack propagation paths are typically marked with dimples 

indicating void initiation, coalescence and growth mechanism. Interestingly the dimple 

sizes on fracture surfaces of specimens broken at 250oC were found to be smaller 

compared to those broken at 28oC {Fig.4.19(b)}. This is indicative of the fact that 

crack propagation resistance of the material also gets influenced by dynamic strain 

aging phenomenon. This fractographic observation is in agreement with lower dJ/da 

of the specimens at elevated temperature. 
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Fig.4.16. Typical SEM fractograph of SZW of J integral tested  LC 
specimen at 200oC.  

Fig.4.17. Typical SEM fractograph of SZW of J integral tested  LC 
specimen at 250oC.  
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Fig.18(a) SEM fractograph of fractured  surfaces of J integral tested 
LC specimen at 28oC 

Fig.18(b) SEM fractograph of fractured  surfaces of J integral tested
LC specimen at 250oC 

 105



 
 
 

Fig.19(a) SEM fractograph of fractured  surfaces of J integral tested 
CL specimen at 28oC 

Fig.19(b) SEM fractograph of fractured  surfaces of J integral tested 
CL specimen at 250oC 
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4.4. CONCLUSIONS 

The following major conclusions can be drawn from the investigations presented 

in this chapter. 

1. The JQ fracture toughness values of 1CT specimens prepared from the selected SA 

333 Gr6 steel do not satisfy the validity criteria suggested in ASTM E-813 standard. 

Since one can at best fabricate 1CT specimens from the PHT piping, the JQC (as 

defined here, equivalent to JQ in standard) value has to be used for LBB analysis. 

2. The characteristics of the stretch zone in the investigated steel are of unconventional 

type and is intermixed with ductile tearing. Its initial and total expanse can be used to 

estimate approximate values of Ji and JQC respectively. 

3. Alternate blunting and void growth at the crack tip provides higher resistance to 

crack propagation in the selected material in comparison to several commercial steels 

of similar carbon level. 

4. The crack initiation and the crack propagation toughness of the steel are inferior in 

CL plane in comparison to that in LC plane because of the differences in the nature of 

inclusions and banding pattern in these planes. 

5. The magnitudes of JQC and dJ/da of the steel estimated in the temperature range of 

200-300oC are lower than those at room temperature for both LC and CL orientations 

of the specimen. This has been attributed to dynamic strain aging being operative in 

the above-stated temperature range. 
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5 THE EVALUATION OF CYCLIC J-R CURVES 

5.1 INTRODUCTION 

The general material characteristics and the dynamic strain aging behaviour of 

the selected SA 333 steel have been discussed in chapter 3. The results and discussion 

related to the study on monotonic fracture toughness behaviour of the steel have been 

presented in chapter 4. The nature of application of the steel demands that its fracture 

resistance under cyclic loading be examined for careful assessment of its integrity in 

service. This requirement emerges from the fact, that fracture toughness behaviour in 

monotonic loading and in cyclic loading are different, and the latter is generally 

inferior compared to the former one. Several report e.g. that by Landes et.al. on 4340 

and A 508 steel [8,9], Seok et al. [10,33] on SA 516 steel, Rudland et al [11] on SS304 

and A106 steel etc., support the earlier statement. There is no report is available on the 

study of fracture toughness behaviour of SA 333 steel in cyclic loading condition. This 

aspect is the major content of investigation in this chapter. 

Earlier investigations on crack growth resistance of structural materials under 

cyclic loading have established that either decrease in stress ratio or decrease in plastic 

displacement degrades the fracture toughness of the material [10,11]. Thus it is 

required that the effect of these variables on the cyclic crack growth resistance of SA 

333 steel should also be explored systematically. In addition one finds scanty efforts 

are directed to understand micro mechanism of crack propagation during this type of 

tests. This aspect is also considered pertinent while an investigation is being made on 

cyclic crack growth resistance of this steel. Further the cyclic fracture toughness tests 

are tedious, expensive and time taking in nature compared to monotonic fracture 

toughness tests. It would thus be useful if a correlation can be established between 

monotonic and cyclic fracture toughness properties of steels. In this part of 

investigation, some attempts were also directed to address this problem. 

In summary the objectives of the investigation presented in this chapter 

are (i) To examine the effect of cyclic loading on the J-R curves at various stress 

ratios. (ii) To study the effect of plastic displacement on the cyclic J-R curves. (iii) 

To understand the micro mechanisms of crack propagation in the material 
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during various types of cyclic loading and (iv) to search for correlation between 

the monotonic and cyclic fracture toughness of the selected steel. 

5.2 EXPERIMENTAL 

5.2.1 Cyclic J-R Curve Testing 

The cyclic J–R curve testing was carried out using compact tension specimens 

as described in section 4.1.1. A series of these tests were carried out and the details of 

the specimen used for this investigation are given in Table 5.1. These tests were done 

with the help of an INSTRON machine (the actuator of the machine being attached 

with an anti rotation fixture) and with the use of a COD gauge. The details of the 

testing system have been previously described in section 3.1.5. An additional x-y 

recorder was attached to the analogue out put ports of the machine to get on line load 

displacement plot during a test, apart from recording the digital data in a computer (§ 

section 3.1.5). 

The cyclic J tests were semi-automated. The loading sequence for the test is 

given in Fig.5.1 while the test variables are shown in the Table 5.2. The cyclic J tests 

were carried out in stroke control mode using an actuator speed of 0.5mm/min. Each 

test consisted of the following steps as shown in Fig.5.2. 

(1) A specimen was loaded (segment OA in Fig.1) to a desired plastic 

displacement level ∆V (0.15, or 0.3 or 0.5 mm), 
(2) This was then unloaded to the desired predetermined load Pmin (=R.Pmax) 

where R is the stress ratio on which the test was being conducted and Pmax 
is the load achieved before start of unloading. The magnitude of R was 
varied in different tests (§ Table 5.2) 

(3) Next it was reloaded till it achieved the displacement level corresponding 
to point C in the unloading path (as shown in Fig.5.2) 

(4) The specimen was further loaded to the next desired plastic displacement 
level (as shown by point D in Fig.5.1 and Fig.5.2) and the steps 2 to 4 were 
iterated. These iterations were continued till the maximum load-bearing 
capacity of the sample or to a point corresponding to some significant crack 
growth in the specimen (as observed on the specimen surface). 

(5) After the completion of the cyclic J test, the specimens were post fatigue 
cracked till failure. 
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The digital data of load, position and LLD were collected through a computer attached 
to the machine. 

The initial and the final crack length were optically measured using a travelling 
microscope as described in section 4.1.2 on the broken fracture surface of three 
specimens. The optically measured value of crack length was found to be within 

±0.05mm of what has been estimated from CCL relation {§ eqn. (4.3) in section 4.2.3} 
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Fig.5.1 Loading sequence for cyclic J at zero and negative stress ratios, 
conducted with pre-selected values of ∆V and R as shown in Table 5.2.
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Fig.5.2 Demonstration of loading sequence for negative stress ratio 
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Table 5.1. Dimensions of the specimens used in cyclic J test together with the fatigue 

pre-cracking conditions. 

Sl.
No. 

Specimen 
Code 

W 
(mm) 

B 
(mm) 

BN 
(mm) 

aN  
(mm) 

ao   
(mm) 

∆K# 

(MPa√m) 

1. LC5 50.14 25.02 19.9 15.5 25.11 18.48 

2. LC6 50.21 24.83 20.04 15.4 25.07 18.71 

3. LC7 50.20 25.03 19.32 15.6 25.08 18.43 

4. LC8 50.16 25.04 19.85 15.6 25.08 18.08 

5. LC9 50.22 25.03 19.52 16.19 25.05 16.90 

6. LC10 50.32 24.98 19.64 16.34 25.01 16.64 

7. LC11 50.18 25.02 20.08 16.47 25.01 16.64 

8. LC12 50.18 25.04 19.82 16.59 25.13 16.58 

9. LC13 50.05 25.05 19.87 15.49 25.02 17.54 

10. LC14 50.01 24.94 19.85 15.46 24.96 16.74 

11. LC15 50.13 25.03 19.80 15.85 25.06 16.74 

12. LC16 50.13 25.03 19.52 16.34 25.02 16.84 

13. LC17 49.94 25.04 19.64 19.76 25.16 18.64 

14. LC18 50.40 24.90 19.87 15.98 25.09 18.31 

15. LC19 50.41 24.94 19.85 16.16 25.02 18.34 

16. LC20 49.61 24.98 19.80 16.30 24.98 18.36 

17. LC21 50.09 24.85 19.53 16.42 25.21 18.52 

18. LC22 50.54 24.86 19.98 15.47 25.23 16.90 

19. LC23 50.87 24.86 20.24 15.82 25.71 16.64 

20. LC24 50.36 24.89 19.37 16.56 25.14 16.64 

22. CL5 50.58 24.91 19.52 16.51 25.18 17.54 

23. CL6 50.9 24.92 19.64 16.38 25.83 16.74 

24. CL7 50.74 24.95 20.08 16.49 25.52 16.74 

∆K# = ∆K at the end of pre-cracking, W = width of the specimen, 
B= total thickness of the specimen, BN = net thickness of the specimen 
aN = machine notch length of the specimen, ao = crack length after pre-cracking,  
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Table 5.2 Test variables for cyclic J tests. 

Specimen 
Orientation 

Stress Ratio      
R 

Plastic Displacement ∆V 
(mm) 

 

 

LC 

CL 

N (0.9) 

0 

-0.5 

-0.8 

-1.0 

-1.2 

 

0.15 

0.30  

0.50 

5.2.2. Fractography 

The fractured surfaces were ultrasonically cleaned and then examined under a 

scanning electron microscope. The prominent features of interest were recorded. 

Fractographs of ductile crack extension were recorded for each specimen. Two 

additional tests were carried out for fractographic examinations. These are: (a) after 

the completion of a cyclic J test, a specimen was subjected to zero load level in its 

unloading path and was taken out and (b) a similar specimen was taken out during its 

loading path from a minimum load corresponding to R = -1. These specimens were 

sectioned from the mid thickness encompassing the crack tip. The specimens were 

slowly polished starting from grade 80 onwards up to 1200. Next the specimens were 

successively polished on Texemet cloth using diamond paste of particle sizes 1µm and 

0.25µm. These polished samples were observed in optical microscope and SEM with 

suitable recording of the crack path. 

5.3 RESULTS AND DISCUSSION 

The results obtained from the cyclic J tests and the concerned fractographic 

studies are described in this part. The observations are discussed with respect to (i) 

Development of cyclic J-R behaviour, (ii) Effect of stress ratios on cyclic J-R curve, 

(iii) Effect of plastic displacement on cyclic J-R curve, (iv) Determination of critical J 

and dJ/da, (v) Validation of linear summation model (vi) Monotonic fracture 

toughness vis a vis cyclic fracture toughness, (vii) Alternative analysis of cyclic J test, 

and (viii) Mechanism of crack propagation under cyclic loading. 
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5.3.1. Development of Cyclic J–R Curves 

Typical recorded load vs load line displacement (LLD) plots generated during 

cyclic J tests are shown in Fig.5.3. The J-R curves were constructed using these load-

LLD data as described in section 4.2.3. The magnitudes of Je and Jpl were calculated 

using eqn (4.8) and eqn (4.11). The values of Jpl were estimated taking account of the 

area only under tensile loading following several earlier reports [10,11,33,98]. The 

crack length was calculated using the unloading data falling between Pmax and 70% of 

Pmax. The selection of the unloading data range for estimating the crack length was 

based on its compatibility with that estimated by optical measurements. The cyclic J-R 

curves were developed by plotting values of J against values of crack extension ∆a. 

The J-R curves for stress ratio R = 0 and for plastic displacements 0.15, 0.3 and 

0.5mm are shown in Fig.5.4. All the cyclic J-R curves appear coincident at the stress 

ratio R = 0. Hence it may be inferred that the magnitude of plastic displacement do not 

considerably influence the J-R curves of the selected material at stress ratio R = 0. 

Kaiser [28] has reported that the resistance offered by J-R curve can decrease with 

decrease in plastic displacement for ∆V less than 62µm but for ∆V ranging between 

62.5 and 250mm, the J-R curves obtained by this investigation for OX 813 steel are 

similar. Hence the current results of the invariant nature of J-R curve for 

150≤∆V≤500µm are in agreement with the results reported by Kaiser. 

The monotonic J-R curves for ∆V=0.3mm are shown in Fig.4.7. Two additional 

J-R curves at plastic displacement 0.5 and 0.15mm were determined. A comparison of 

the monotonic and cyclic J-R curves at identical plastic displacements is illustrated in 

Fig5.5. The results in Fig.5.5 indicate that monotonic J-R curve at R = 0.9 is almost 

identical with cyclic J-R curves at R=0 for the three levels of plastic displacements at 

which these experiments were made. This observation is in accordance with the 

observations of Rudland et al. [11] for SS 304 and A106 Grade B steel. But Seok et al. 

and Joyce [27] have reported that cyclic J-R curves at R = 0 are inferior to the 

monotonic J-R curves for SA 516 Gr70 steel and 3% Ni steel respectively. It is not 

clear at this stage what exactly brings forth difference between monotonic and cyclic 

J-R curves at R = 0 in a few materials where as the J-R curves remain similar in some 

other material. 
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Fig.5.3 Typical load-displacement plots obtained during cyclic J-test
on specimens with LC orientation
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Fig.5.4 Effect of plastic displacement ∆V on J-R curve at the stress ratio 0
for LC specimen
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5.3.2. Effect of stress ratio on cyclic J-R curves 

Some typical J-R curves generated using the experimental load-LLD data for 

R<0 are shown in Fig.5.6, Fig.5.7 and Fig.5.8 for ∆V = 0.3, 0.5 and 0.15mm 

respectively. At each plastic displacement level the J-R curves are found to lie 

systematically below each other with decrease in stress ratio. The J-R curves at the 

stress ratios R = –1.0 and –1.2 are, however, almost identical for 0.15 ≤ ∆V ≤ 0.5mm. 

Information related to cyclic J-R curves under tension-compression load cycle is 

limited [8-11,98]. Seok et.al. [10,33] have observed resistance to crack propagation for 

SA516 steel decreases as it is subjected to increased compressive loads; the minimum 

resistance to crack propagation being encountered at stress ratio R = -1.0. Landes and 

Liaw [9] have also observed cyclic J-R curves at R =-1.0 to be inferior to monotonic J-

R curve for AISI 4340 steel. Rudland et al. [11] have also made observation for 304 

and A 106 B steels; but the minimum resistance to crack propagation is attained at R = 

-0.8 and at –1.0 for A 106 B steel and 304 SS respectively. 

A comparison of the present results related to J-R curves at R < 0 (Fig.5.6, 

Fig.5.7 and Fig.5.8) with similar results reported by earlier investigators indicate a 

general trend. It can be inferred that resistance to crack propagation in cyclic loading 

of structural materials deteriorates with increased magnitude of the compressive load 

cycle up to about R = -1.0, below which there is no further deterioration in the 

resistance to crack propagation. Rudland et al. has explained this phenomenon in terms 

of re-sharpening of the blunted crack tip and the void formed ahead of it [11]. It has 

been observed by them that both crack tip and void ahead of it gets compressed during 

the compressive load cycle and forms a sharp crack tip, which needs very less amount 

of energy to open up in the next cycle of tensile load. This phenomena causes decrease 

in resistance to crack propagation in the case of stress ratio R < 0. 

5.3.3. Effect of plastic displacement on cyclic J-R curve 

The effect of plastic displacement on the cyclic J-R curves is illustrated in 

Fig.5.9, Fig.5.10, Fig.5.11 and Fig.5.12 for the stress ratio –0.5, -0.8, -1.0 and –1.2 

respectively. At negative stress ratio decreasing plastic displacement leads to enhanced 

degradation in the resistance to crack propagation. This is obvious from the results 

shown in Fig.5.9 to Fig.5.12 where one can notice that the cyclic J-R curve at ∆V = 

0.15 lies below all others. The obtained nature of degradation of cyclic J-R curve is  
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Fig.5.6 Effect of stress ratio on cyclic J-R curves for ∆V = 0.3mm
along LC orientation
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Fig.5.7 Effect of stress ratio on cyclic J-R curves for ∆V 0.5mm along
LC orientation
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Fig.5.8 Effect of stress ratio on cyclic J-R curves for ∆V = 0.15mm
along LC orientation
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Fig.5.9 Effect of plastic displacement ∆V on J-R curve for the stress
ratio -0.5 for LC specimen
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Fig.5.10 Effect of plastic displacement ∆V on J-R curve for the stress
ratio -0.8 for LC specimen
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Fig.5.11 Effect of plastic displacement ∆V on J-R curve for the stress
ratio -1.0 for LC specimen
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Fig.5.12 Effect of plastic displacement ∆V on J-R curve for the stress
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similar to that observed by Landes et al. [8] and Seok et al. [10,33] for A 508 and SA 

516 Gr 70 steel respectively. So it can be inferred that at negative stress ratio lower 

plastic displacement leads to higher degradation in resistance to crack propagation in 

structural materials; but variation of plastic displacement does not affect cyclic J-R 

curves of this material for stress ratio R ≥ 0. 

The decrease in plastic displacement during cyclic J test means imposition of 

more number of cycles for obtaining J-∆a variation. Alternatively when more number 

of cycles is imposed on a structural steel at negative stress ratio during cyclic J-test, 

the resistance to crack propagation degrades in comparison to that which requires less 

number of cycles for such tests. The decrease in the magnitude of cyclic J-R curve 

with increase in number of cycles is due to increased residual tensile stress at the crack 

tip. Soek et al. [10,33] had shown that when a specimen passes through zero load from 

compressive load, some amount of tensile residual stress is left at the crack tip at zero 

load, and increased number of cycles increase the magnitude of this residual stress. 

This aspect has been supported by suitable stress analysis carried out by Seok et al. 

[10,33]. The crack tip is subjected to more number of cycles at lower ∆V than that at 

higher ∆V. Since higher magnitude of tensile residual stress builds up at the crack tip 

in experiments conducted with lower magnitude of ∆V, the applied stress in 

conjunction with this results in inferior resistance to crack propagation. 

5.3.4. Determination of critical J and dJ/da 

There is neither any standard nor any suggested guideline by any International 

Committee for evaluating fracture initiation toughness in cyclic J test unlike that [81] 

for monotonic Jc determination. An attempt has been made here to evaluate Jc from the 

cyclic J-R curves following the guidelines for evaluating Jc in monotonic tests. The 

magnitude of Jc in monotonic tests, as discussed in section 4.3.1, has been determined 

with the help of experimental blunting line. Similar attempts to obtain Jc in cyclic J-R 

curves were found unsuitable because points on the J-R curve qualifying for the 

experimental blunting line were a few in number. So an alternate method was adopted. 

The (J, ∆a) data points lying between 0.15 mm to 0.3x(W-ai) mm of crack extension 

were power law fitted to eqn. (4.13). The intercept of the fitted curve with a vertical 

offset at 0.2mm crack extension was considered as critical J0.2. A typical example 

illustrating the procedure for the evaluation of J0.2 is illustrated in Fig.5.13. This 
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method is in following the recommendations of European Structural Integrity Society 

(ESIS) [99]. The evaluated values of J0.2, the relevant experimental conditions and the 

magnitudes of C1 and C2 obtained through eqn. (4.13) are reported in Table5.3. The 

magnitudes of J0.2 for the monotonic J-R curves were also evaluated for comparison 

purpose and are shown in this Table.5.3 

Table 5.3 Fracture toughness parameters for cyclic J tests 

Specimen 
code 

∆V   
mm 

Stress 
Ratio R 

J0.2        
kJ/m2 

C1 C2 dJ/da       
MJ/m3 

LC5 0.15 0.9 405.28 1455.07 0.797 1209.30 

LC6 0.15 0 375.61 1333.89 0.824 1145.76 

LC7 0.15 -0.5 194.43 753.35 0.814 597.25 

LC8 0.15 -0.8 199.25 478.98 0.554 200.716 

LC9 0.15 -1 158.87 332.76 0.452 151.15 

LC10 0.15 -1.2 168.84 322.47 0.404 114.50 

LC11 0.3 0.9 413.66 1365.86 0.743 1088.50 

LC12 0.3 0 438.66 1405.25 0.713 1085.12 

LC13 0.3 -0.5 254.66 842.94 0.833 711.51 

LC14 0.3 -0.8 223.85 681.22 0.696 469.47 

LC15 0.3 -1 180.81 361.80 0.508 173.65 

LC16 0.3 -1.2 211.92 429.322 0.437 169.69 

LC17 0.5 0.9 399.55 1424.701 0.776 1183.88 

LC18 0.5 0 419.64 1353.423 0.727 1031.79 

LC19 0.5 -0.5 233.28 923.658 0.843 789.99 

LC20 0.5 -0.8 245.47 814.96 0.698 714.05 

LC21 0.5 -1 198.53 462.459 0.518 175.29 

LC22 0.5 -1.2 242.59 481.135 0.371 130.66 

 

The magnitudes of Jc and J0.2 for plastic displacements ∆V=0.15, 0.3, 0.5 for 

monotonic tests are compared as a bar diagram in Fig.5.14. It is obvious from this 

figure that the magnitudes of J0.2 are lower in comparison to the values of Jc, in 

agreement with the schematic illustrations in Fig.4.11. Since the magnitude of J0.2 is 

lower and more conservative with respect to Jc, its value should be considered for life  
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assessment of structural components subjected to cyclic loading till a standard emerges 

on measurement of fracture initiation toughness in cyclic loading. 

The variation of fracture initiation toughness of the steel with stress ratio for 

different plastic displacements is shown in Fig.5.15. The magnitude of J0.2 was found 

to decrease with decrease in stress ratio from 0 to –1.0. The fracture initiation 

toughness was found to be minimum at the stress ratio –1.0. The magnitude of J0.2 at 

the stress ratio –1.0 for all the three plastic displacements was found to be 180±20 

kJ/m2. A comparison of J0.2 at R = –1.0 with Jc at R > 0 indicates that the former is 

significantly lower (almost by about 55%) than the latter one. This observation is 

similar to that reported by Rudland et al. in 304 SS and A 106 B steel. These 

investigators have reported degradation of cyclic fracture initiation toughness for 304 

SS and the A 106 B steel by 60% and 30% respectively [11]. 

The resistance to crack propagation (dJ/da) for cyclic J-R curves was also 

evaluated following the procedure described in section 4.3.1. The magnitudes of dJ/da 

are found to decrease with decrease in stress ratio from 0 to –1.2 for all the three 

plastic displacement levels as shown in Fig.5.16. The magnitude of dJ/da was found to 

be minimum at the condition R =-1.2 and ∆V=0.15mm. The dJ/da value at R= –1.2 is 

only about 11% of its monotonic value for plastic displacement 0.15mm. The decrease 

in dJ/da is found to lie in the range 85-88% for ∆V=0.3 and ∆V=0.5 mm. The cyclic 

loading through compressive loads has thus significant deleterious effects on the 

fracture initiation toughness and the resistance to crack propagation behaviour of SA 

333 steel. The observed degradation of dJ/da in the investigated steel is in agreement 

with similar observations by Rudland et al. for 304 stainless steel and A 106 B steel 

[11]. The comparative analysis of J0.2 and dJ/da in cyclic and monotonic loading thus 

lead to the conclusion that fracture initiation toughness and the resistance to crack 

propagation of materials degrade considerably in compressive cyclic loading. 
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5.3.5. Validation of linear summation model 

Joyce[27] and Kaiser[28] have reported estimation of cyclic crack growth from 

monotonic and fatigue crack growth data for positive stress ratios (R ≥ 0). They 

assumed that ∆acyclic is linear sum of ∆amonotonic and ∆afatigue as given below: 

 ∆acyclic = ∆amono + ∆afatigue (5.1) 

where,         ∆acyclic = computed crack extension 

  ∆amonotinic = crack extension due to monotonic tearing 

    ∆afatigue = crack extension due to fatigue cycling 

In the present investigation attempts were made to examine this model for 

cyclic tension–compression loading (i.e. R < 0). The magnitude of ∆afatigue and 

∆amonotinic were computed as: 

 ∆afatigue = 
da
dN = C(∆K)m (5.2) 

where, C and m are Paris constants from conventional FCGR tests. 

The magnitude of ∆K in eqn. (5.2) was taken as Kmax because Kmin = 0 for fatigue tests 

with negative R ratio as per ASTM standard E-647 [100]. The magnitude of Kmax was 

obtained from the value of Pmax achieved in each cycle during cyclic J test. This was 

done using the eqn (4.9). 

 ∆amonotonic = 



J

C1

1/C2
 (5.3) 

where, C1 and C2 are power law constants obtained from monotonic J-R curve. 

A separate FCGR test was carried out to obtain the value of C and m for this 

material. This test was done following the ASTM standard E-647 [100] in decreasing 

∆K mode. The fatigue crack growth data is given in Fig.5.17 and the experimental 

details for this test are given as legends. The log(da/dN) vs log(∆K) were subjected to 

linear regression analysis to obtain the value of C and m. The magnitudes of ∆amonotonic 

were obtained from the J-R curve data given in Table 5.3. Then the cyclic crack 

extension i.e. ∆acyclic was evaluated by summing up ∆amonotonic and ∆afatigue.  
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Fig.5.17 da/dN vs ∆K plot showing paris regime of fatigue crack growth 
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The computed values of ∆acyclic were then compared with the crack extension data 

obtained from the cyclic J test (denoted here as ∆aexpt). A typical comparison is 

illustrated in Fig.5.18 corresponding to cyclic J test carried out at ∆V = 0.5mm and R = 

-1.0. 

The experimentally obtained ∆aexpt is found to be always greater than the 

computed ∆acyclic. This implies that there is some additional crack extension. This 

additional crack extension is considered to arise due to interaction between tear and 

fatigue and is denoted as ∆ainteractive. Thus the simple linear summation model 

suggested by Joyce[27] and Kaiser[28] does not appear to be valid for negative R ratio. 

It may be noted here that the published literature in this direction are only for stress 

ratio R≥0 [27,28]. In the case of R<0, voids and crack tip re-sharpening enhances the 

stress tri-axiality. This results in additional crack extensions, ∆ainteractive. It may thus be 

inferred that the cyclic J test crack extension data of SA 333 steel for negative stress 

ratio cannot be predicted by linear summation model. 

The ∆ainteractive was computed by subtracting ∆acyclic from ∆aexpt. The nature of 

variation of magnitude of ∆ainteractive with the magnitude of ∆afatigue for ∆V=0.15, 0.3 

and 0.5mm is given in Fig.5.19, Fig.5.20 and Fig.5.21 respectively. It is evident from 

the figures that ∆ainteractive is a function of ∆V and R ratio. Thus it can be concluded that 

∆ainteractive increases with the decrease in stress ratio and decrease in the magnitude of 

plastic displacement and both have synergistic effect on it. 

5.3.6. Monotonic fracture toughness vis a vis cyclic fracture toughness 

Determination of cyclic fracture toughness of a material is tedious, time 

consuming and expensive in nature comparison to fracture toughness tests. As a 

consequence reports related to cyclic fracture behaviour of materials are limited in 

number unlike that for monotonic fracture behaviour, but information related to cyclic 

fracture toughness may be required for critical applications like nuclear power plants. 

An attempt is made here to search for a co-relation between monotonic and cyclic 

fracture toughness of the material in order to get a crude estimate of the latter from the 

former. Any such correlation will be of much use and will help in predicting the safe 

operation life of the components. 
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Fig.5.20 Variation of ∆ainteractive with ∆afatigue at ∆V=0.3mm
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The effect of variation of cyclic J0.2 for ∆V=0.15, 0.3, 0.5mm with the change 

in stress ratio has been given in Fig.5.15 for specimens having LC orientation. In this 

plot the data points lying between R = 0 and –1.2 were fitted to parabolic equations for 

all the three plastic displacement levels. For the three ∆V levels the obtained equations 

are as follows. 

J0.2 = 371.1828+415.14998R+208.43993R2  (5.4) 

J0.2 = 438.37046+476.11117R+235.56541R2  (5.5) 

J0.2 = 416.56956+463.33397R+263.76488R2  (5.6) 

Eqn (5.4) to (5.6) are respectively for ∆V 0.15, 0.3 and 0.5mm respectively. 

Considering the equations to be of the form Y = A+Bx+Cx2, it is noted that the 

magnitude of constants marginally increases with increase in ∆V and the magnitude of 

‘A’ is marginally higher than J0.2 monotonic. Some trial and calculations indicate that 

J0.2 cyclic can be represented as function of J0.2 monotonic in the following form 

equation and the curve obtained is shown in Fig.5.22 

 (J0.2)R = (J0.2)monotonic + α1



σf

2

E B.R +α2



σf

2

E B.R2 (5.7) 

where, (J0.2)R = 0.2mm vertical intercept fracture initiation toughness at stress ratio R 

                ( the value of R lies between –0.5 to –1.0) and  

(J0.2)mono = 0.2mm vertical intercept fracture toughness for monotonic loading 

are given in kJ/m2. 

σf = Engineering fracture stress and is in MPa. 

E = the elastic modulus of the material and is in GPa. 

B = thickness of the specimen and is given in mm. 

α1 = 1.77, α2 = 0.897 and are constants 

The equation developed has been employed to compute the values of cyclic J0.2 

at the stress ratio 0, -0.5, -0.8 and –1.0 along the crack plane CL orientation. The 

values are given in Table 5.4 along with the experimentally determined values. The 

predicted values of fracture initiation toughness for the stress ratio 0, –0.5, -0.8 and -

1.0 are in good agreement with the experimentally determined values. A comparison 

of the two is given in the Fig.5.23. 

 132



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

-1.5 -1.0 -0.5 0.0

150

200

250

300

350

400

450

Fig.5.22 The parablic curve shown with the effect of stress ratio on
magnitudes of J0.2 for specimens with LC orientation

J 0.
2, k

J/m
 2

Stress ratio, R

       ∆V mm
 0.15
 0.30
 0.50
 curve of eqn.(5.7)

 

1.0 0.5 0.0 -0.5 -1.0
120

160

200

240

280

320

360

400

Fig.5.23 Comparision of experimental and predicted value of J
0.2

 for various
stress ratio R

              J
0.2

 Experimental value
 Predicted value

J, 
kJ

/m
2

Stress ratio, R

 

133



Table5.4 The calculated and experimental J0.2 values for various 
stress ratios along CL orientation 

Stress Ratio Predicted value 

(J0.2) kJ/m2 

Experimental 

(J0.2) kJ/m2 

0 390 380 
-0.5 267.34 254 

-0.8 188.5 153 

-1.0 135.9 140.5 

5.3.7. Additional analysis of cyclic J tests 

Cyclic load vs LLD data can be used for determining fatigue crack growth rate 

of a material at higher J values. This can be done by two approaches one suggested by 

Dowling et al. [34] and the other by Mogami et al. [30]. Dowling’s operational J is 

based on J integral concept of Rice. The operational J (termed here as ∆JD) has been 

evaluated in following Dowling et al [34] in the following steps: 

(1) Load vs LLD plot was separated out for each cycle.  

(2) The instantaneous crack length ai was calculated as described in the section 

5.3.1. The da/dN in each cycle was evaluated as (ai-ai-1). 

(3) The closure load was identified by the change of slope in the compressive 

region of each loading cycle. 

(4) The area under load vs LLD curve, above closure load was evaluated for each 

cycle. This area was converted to ∆JD using the equation: 

 ∆JD = 
ηA

(W-ai)BN
  (5.5) 

where,                       A = area under the load displacement curve starting from the 

crack opening point 

  BN = net thickness of the specimen 

   W = width of the specimen 

   ai = instantaneous crack length 

   η = f(a/W) and is given by the expression given below 

 η = 2.0+0.522 x 
(W-ao)

W   (5.6) 
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The obtained values of da/dN were plotted against ∆JD (Fig.5.24) for the stress 

ratio –0.5 and –1.0 and ∆V = 0.5mm, along with fatigue crack growth rate (FCGR, 

Paris curve regime II) data. The data of regime III of the Paris curve (i.e. at Pmax 32 kN 

load controlled test) has also been superimposed on the same graph. It is evident from 

the plot that ∆JD does not show any systematic trend with da/dN data. Similar 

observations were also made when ∆JD values estimated at ∆V =0.15 and 0.3mm were 

compared with FCGR data. Hence it can be concluded that ∆JD [34] approach does not 

explain the fatigue crack growth data of SA 333 steel. 

Mogami et.al. [30] attempted to correlate Jmax with da/dN. The J integral at the 

maximum load (Jmax) was calculated using the equation proposed by Ando [101]. 

Jnmax = Jmax
 n-1 x 

(W-an)
(W-an-1)  + (J’-J’n-1) x 

(W-ao)
(W-an-1)   (5.8) 

where, Jn
max and Jn-1

max = Jmax at the nth and (n-1)th cycle respectively 

                      ao = initial crack length 

         an and an-1 = instantaneous crack length at the nth and (n-1) cycle 

 J'max and J'max = J integral at the nth and (n-1)th cycle respectively, obtained 

from the area of the envelop of the cyclic load-displacement curve, 

which does not take into account the effect of crack growth and 

unloading. 

The values of Jmax for each cycle were calculated using the eqn. (5.8) for all the 

investigated stress ratios and plastic displacements. A plot of Jmax vs da/dN has been 

given in Fig.5.25 for ∆V = 0.5mm. Similar trend has been observed for ∆V=0.15 and 

0.3mm. The magnitudes of Jmax do not fall on the extrapolated line of the best linear fit 

of the fatigue crack growth rate data of this material. It is evident from the figure that 

the crack growth is higher than what is predicted by da/dN vs ∆J plot of this material. 

It can therefore be concluded that Dowling’s operational J under-predicts the crack 

growth rate of the material where, as Jmax concept of Mogami et al. over-predicts it. 

5.3.8. Mechanism of crack propagation under cyclic loading 

Some representative fractographs of ductile crack extension region of the 

(cyclic J) tested specimens for the stress ratios of 0.9, 0, -0.5, -0.8 and –1.0 are shown 

in Fig.5.26(a)-(e). These fractographic features of ductile crack extension region of 

specimens tested at R 0.9 and 0 are similar and exhibit prominent dimple fracture.  
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Fig.5.24 Dowlings ∆JD vs da/dN plot for the stress ratio -0.5, -0.8 and -1.0
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Fig.5.26(a) Typical fractograph of the ductile crack extension region of a 
specimen tested under monotonic loading condition i.e. R~ 0.9 and  ∆V=0.3mm
Fig.5.26(a) Typical fractograph of the ductile crack extension region of a 
specimen tested under monotonic loading condition i.e. R~ 0.9 and  ∆V=0.3mm  

 

 

 

 

 

 

 

 

 

 

Fig.5.26(b) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= 0 and ∆V=0.3mm
Fig.5.26(b) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= 0 and ∆V=0.3mm  
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Fig.5.26(c) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -0.5 and ∆V=0.3mm
Fig.5.26(c) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -0.5 and ∆V=0.3mm  
Fig.5.26(d) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -0.8 and ∆V=0.3mm
Fig.5.26(d) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -0.8 and ∆V=0.3mm  
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Fig.5.26(e) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -1.0 and ∆V=0.3mm
Fig.5.26(e) Typical fractograph of the ductile crack extension region of 
specimen tested at the stress ratio R= -1.0 and ∆V=0.3mm  
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But as the stress ratio becomes negative and higher in magnitude, the crack extension 

regions either show partial or no dimple regions, as evident in fractographs shown in 

Fig5.26(c)-(e). At the stress ratio R = –0.5, some dimples and or contours of these are 

observed, but at R = -0.8 and below no dimples could be detected. Additionally some 

fissure marks are noticed in the fracture surfaces of specimens tested at R = -0.8 and 

below. 

The observations in fractographs shown in Fig.5.26(a) to (e) can be explained 

in the following manner. At positive R ratio dimples are initiated under tensile loading. 

At negative R ratio with lower magnitudes of R the compressive load cycles induce 

smearing and rubbing of the crack faces and thus gradually eliminate the dimple 

features. At still higher magnitude of negative R ratio, two possibilities exist: either 

dimples are completely smeared or rubbed or the formation/ growth of the dimples is 

inhibited during the compressive cycle. The existence of the fissure cracks on fracture 

surfaces of specimens at negative R ratio can be considered to be characteristics of 

compressive load cycles. Thus it can be inferred that the formation of dimples, their 

smearing and formation of fissure cracks govern the mechanism of crack propagation 

during cyclic J test. The smearing of dimples and the presence of fissure cracks are not 

observed on fractographic surfaces of specimens tested in monotonic loading {§ 

Fig.5.26(a)}. Hence it can be concluded that the mechanisms of crack propagation in 

cyclic and monotonic tests are different. 

The interrupted test fractography of a few cyclic J test specimens were done at 

the three following conditions for examining the crack tip profiles: (a) monotonic J-

test, stopped at tensile load, (b) cyclic J test at R = -1.0 and ∆V = 0.3mm, test stopped 

at the maximum tensile load; (c) cyclic J in above condition (b), test stopped at the 

minimum compressive load. The SEM photographs of the crack tip profiles of the 

above specimens are shown in Fig.5.27(a)-(c). The crack tip profile of monotonic J-

tested specimen reveals blunted crack tip with a void present ahead of it as shown in 

Fig.5.27(a). The crack tip profile of the cyclic J specimen stopped after tensile loading 

is given in Fig.5.27(b). The crack profile in Fig.5.27(b) has less opening at the crack 

tip in comparison to monotonic J test. The crack tip appears more sharpened and the 

voids ahead of it seems to just opened up and joined with the main crack giving rise of 

crack extension. 
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Fig.5.27(a) Crack tip profile of the specimen tested under monotonic 
loading condition R~0.9 and ∆V=0.3
Fig.5.27(a) Crack tip profile of the specimen tested under monotonic 
loading condition R~0.9 and ∆V=0.3  
Fig.5.27(b) Crack tip profile of the specimen tested under cyclic loading condition 
(R= -1.0, ∆V=0.3) and interrupted immediately after tensile loading.
Fig.5.27(b) Crack tip profile of the specimen tested under cyclic loading condition 
(R= -1.0, ∆V=0.3) and interrupted immediately after tensile loading.
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Fig.5.27(c) Top: Crack tip profile of the specimen tested under cyclic loading 
condition (R= -1.0; ∆V=0.3) and interrupted immediately after compressive loading.

Bottom: Enlarged view of the marked window in the top figure.

B

A

Fig.5.27(c) Top: Crack tip profile of the specimen tested under cyclic loading 
condition (R= -1.0; ∆V=0.3) and interrupted immediately after compressive loading.

Bottom: Enlarged view of the marked window in the top figure.
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The crack profile of the cyclic J tested specimen, interrupted after compressive 

loading is given in Fig.5.27(c). The irregular shape of the crack profile exhibits 

propensity of the crack surface to branch out, leaving features of fissures on the 

fracture surface. The primary crack is found associated with several secondary cracks. 

A magnified view of the crack tip is also illustrated. Re-sharpened crack tip and voids 

are indicated by arrow marks at A and B positions respectively in Fig.5.27(c). 

There is a large secondary crack originated from the primary crack in the case 

of cyclic J tests for negative R ratio. This grows parallel to the primary crack 

extension. Thus the total displacement observed during cyclic J test comes from both 

primary and secondary crack extensions The crack length calculations usually done 

from CCL relation as given by the equation (4.3) using total compliance will result in 

higher magnitude of primary crack extension than what actually is happening to the 

primary crack in the specimen. This higher magnitude of primary crack extension will 

result in lowering of the magnitudes of energy absorbed as the expression (4.11) for J 

calculation depends on crack length also. This is one of the contributing factors, in 

apparent lowering of the fracture resistance behaviour of the material during cyclic J 

test. 

Another major point to be noted here is that the crack branching in the case of 

cyclic loading makes the crack estimation in cyclic J conditions complex. Up till now 

there is no method by which both primary and secondary cracks can be estimated 

correctly during a test and a perfect cyclic J R curve be developed. In absence of any 

such thing one is left with the conventional J-R curve approach, which can only 

considers primary crack extension. Only positive point of this method is that it will 

give lower bound value, hence it can be used in LBB analysis of the components 

reliably. 
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5.4. CONCLUSIONS 

The conclusions derived from the results of investigations carried out in this 

chapter are summarized as: 

1. The cyclic J-R curves of SA 333 steel are similar at R≥0 and these curves lie within 

a scatter band of monotonic J-R curves. But the decrease in stress ratio from 0 to –1.0 

has deteriorating effect on cyclic crack growth resistance. 

2. Lower plastic displacement (∆V) results in inferior cyclic crack growth resistance 

curves for R < 0, whereas no such effect has been observed in the case of monotonic J-

R curves and cyclic J-R curves at R ≥ 0. 

3. The fracture initiation toughness J0.2 and the resistance to crack propagation (dJ/da) 

were found to decrease with the decrease in the stress ratio from 0 to –1.0 and with the 

decrease in the plastic displacement (∆V). 

4. The faster crack propagation at R < 0 is due to re-sharpening of the crack tip due to 

compressive load and their joining with the smeared voids. 

5. The linear summation model [28] of the cyclic crack growth for R≥0 could not be 

validated for cyclic J tests at R < 0. The experimentally determined cyclic crack 

extension is more than the sum of monotonic and fatigue component of crack 

extension. The additional crack extension is due to interaction of tearing and fatigue 

phenomena, and this is termed here as ∆anteractive. Its magnitude varies with the 

variation of R and ∆V. 

6. An empirical expression has been suggested between cyclic and monotonic fracture 

initiation toughness. 
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6.0 CONCLUDING REMARKS AND FUTURE WORK 

In this chapter the major conclusions drawn at the end of chapter 3 to chapter 5 

are reviewed, implication of the experimental investigations and their analysis are 

discussed and suggestions are made for further research. 

All critical engineering applications demand assessment of the structural 

integrity of components in the employed service conditions for their safe operation. 

The primary heat transport (PHT) pipings of pressurized heavy water reactors 

(PHWRs) is one such component in the nuclear power plants. This component is 

designed and operated on the basis of leak before break (LBB) concept. The LBB 

concept is based on the principles of fracture mechanics. This approach attempts to 

ensure that no catastrophic rupture would occur of an engineering component without 

prior indication of leakage. To ensure LBB concept, information and understanding of 

the fracture behaviour of the material used for fabrication of a component, are 

required. The PHT pipes of some nuclear power plants are often made of SA 333 Gr 6 

steel, the material of interest in this investigation. A coolant D2O enters into the PHT 

piping at 249oC and exits it at 293oC. In order to assess the structural integrity of this 

component understanding of the fracture resistance behaviour of SA 333 steel upto the 

temperature of 300oC is required. This investigation has been directed to achieve such 

understanding. 

The SA 333 steel is a plain carbon variety, which are usually susceptible to 

dynamic strain aging (DSA) phenomenon. Since the service temperature of this 

material can be upto 300oC, it is essential to look forward for possible DSA in this 

material prior to fracture toughness studies, because DSA is known to degrade 

ductility and toughness of materials. A systematic investigation of DSA in this 

material has been carried out through tests at elevated temperatures and with variation 

of strain rates by two orders. Prior to these tests microstructural features and the 

relevant mechanical properties of the steel have been characterized to establish that the 

material belongs to ASME SA 333 Gr 6 /ASTM A 333 specifications. In the 

investigated test conditions at elevated temperature the occurrence of DSA in this steel 

has been established using evidences of serrations in the pre-necking regions of flow 

curves, increase in tensile strength and decrease in percentage elongation. A few strain 

rate change test have been carried out to confirm the occurrence of this phenomenon. 
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The fracture toughness studies carried out revealed that the material shows high 

fracture resistance behaviour at ambient temperature and the reason for this has been 

attributed to the high degree of cleanliness and finer sizes of inclusions. The 

characteristics of the stretch zone in the investigated steel, is of unconventional type 

and is intermixed with ductile tearing. The Ji estimated from the first expanse of 

stretch zone matches with the magnitude of fracture initiation toughness measured by 

DCPD technique [88] whereas Ji value obtained from the total expanse of stretch zone 

is close to JQC values estimated in this study. The fracture initiation toughness and the 

resistance to crack propagation of the steel is inferior along CL plane in comparison to 

that of LC plane due to presence of elongated inclusions and the higher banding index 

in that plane. The magnitudes of fracture initiation toughness and the resistance to 

crack propagation are lower at elevated temperatures in comparison to ambient 

temperature along both LC and CL planes. These properties are lowest at 250oC along 

CL plane. To ensure safe operation of PHT piping made of SA 333 steel, the obtained 

lowest value of fracture toughness at 250oC should be taken for LBB analysis. 

One of the current design considerations in nuclear power plants is to safe-

guard all of its structural components against seismic loading. The seismic fluctuations 

introduce cyclic loading having large magnitudes of compressive load in a component. 

A few reports available in the literature indicate that the cyclic fracture toughness of a 

material can be inferior to its monotonic fracture toughness properties. The nuclear 

regulatory commission suggests that in the LBB analysis of the PHT pipings, cyclic 

fracture toughness properties should be taken into consideration. But there is no 

information available in the literature about the cyclic fracture toughness behaviour of 

SA 333 steel to the best knowledge of the author. Thus it is very much relevant to 

understand the cyclic fracture behaviour of the selected steel for the safe operation life 

of the components. Some systematic cyclic J-R curve data have been generated during 

this investigation at various stress ratios and for various plastic displacement levels. 

The results of these investigations indicates that cyclic J-R curves of the selected steel 

remain almost invariant for the stress ratio R ≥ 0. But the cyclic crack propagation 

resistance was found to decrease with decrease in stress ratio from 0 to negative 

magnitudes or with the decrease in the extent of plastic displacement. It has been 

demonstrated that higher crack extension during cyclic J test at R < 0 is due to re-

sharpening of the crack tip. One of the important achievements in this investigation is 
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the understanding of the crack propagation mechanism in compressive cyclic loading. 

The mechanism of crack propagation is different in the case of cyclic than that in the 

monotonic J tests. 

An attempt is made here to search for a co-relation between monotonic and 

cyclic fracture initiation toughness of the material in order to get an approximate 

estimate of the latter from the former. An empirical equation has been developed 

correlating cyclic and monotonic fracture initiation toughness. Such kind of correlation 

would be of considerable use when cyclic J-R curves are unknown. 

The studies carried out have helped in understanding the monotonic fracture 

behaviour of the steel under different test conditions, but the primary heat transport 

system consists of several weld joints. The fracture resistance of the weld joints would 

not be the same as that obtained using virgin steel. So future investigation should be 

directed to understand fracture behaviour of the welded joints of SA 333 steels in the 

temperature range 0 to 300oC. In addition it would be of great academic interest to 

know whether the DSA phenomenon remains prevalent in the weld joints. 

In the present investigation cyclic fracture toughness studies on the steel has 

been carried out only at ambient temperature. Since the material is subjected to 

elevated temperatures in its service life, future work should be directed to understand 

the cyclic J–R curve behaviour of the material at elevated temperatures. Similar work 

should also be done on the weld joints of SA 333 steel. The empirical equation 

developed for correlating cyclic and monotonic fracture toughness is having only stress 

ratio as a variable parameter, but it has been observed that this property is influenced 

by the variation of plastic displacement. So further work is required to achieve refined 

version of such equations. 
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