
NDT and E International 98 (2018) 89–94
Contents lists available at ScienceDirect

NDT and E International

journal homepage: www.elsevier.com/locate/ndteint
Nonlinear Lamb wave mixing for assessing localized deformation
during creep

Avijit Kr Metya a,c,*, Soumitra Tarafder b, Krishnan Balasubramaniam c

a AMP- Division, CSIR- National Metallurgical Laboratory, Jamshedpur 831007, India
b MTE- Division, CSIR- National Metallurgical Laboratory, Jamshedpur 831007, India
c CNDE, Mechanical Engineering Department, Indian Institute of Technology Madras, Chennai 600036, India
A R T I C L E I N F O

Keywords:
Lamb wave mixing
Nonlinear ultrasonic
Localized deformation
Modified P91 steel
* Corresponding author. AMP- Division, CSIR- Na
E-mail addresses: avijit@nmlindia.org, avijit353

https://doi.org/10.1016/j.ndteint.2018.04.013

Available online 25 April 2018
0963-8695/© 2018 Elsevier Ltd. All rights reserved
A B S T R A C T

Nonlinear ultrasonic is known to be a promising technique to characterize the microstructural degradation in
engineering materials. This work demonstrates the use of nonlinear Lamb wave mixing technique to assess the
localized deformation in modified 9Cr–1Mo steel during creep. Two Lamb wave modes of different frequencies
(ω1 & ω2) are allowed to mix within the material under certain resonant condition to generate third type of
harmonic waves of frequencies (ω1�ω2). This new generated wave carries the information of material nonline-
arity from the mixing site and independent of the other extraneous nonlinear factors. Amplitude of the generated
third wave depends on the third order elastic constants of the material. This study reveals that nonlinear Lamb
wave mixing technique could be used to assess the localized deformation much prior to its failure.
1. Introduction

Nonlinear ultrasonic (NLU) technique has shown to be a potential
NDE tool due to its ability to characterize damage much prior to the
failure. It uses the interrogation signals at frequencies other than the
excitation frequency to detect changes in structural integrity and char-
acterization of material degradation [1]. It relies on the nonlinear
stress-strain behavior or nonlinear Hooke's law that is dominated by
higher order elastic constants in isotropic elastic solid. Initial sinusoidal
elastic wave gets distorted and generates higher order harmonics in
presence of nonlinearity within the materials. This NLU technique as-
sesses the average nonlinearities over the region between transmitter and
receiver; so, spatial resolution is limited. But the major problem in NLU
technique/harmonic generation is to distinguish the causes of nonline-
arity. Because, there are multiple extraneous sources that generate higher
harmonics beside material nonlinearity and these may be the instru-
mentation of the measurement system, coupling media or other external
factors [2]. So, the measured nonlinearity includes the material nonlin-
earity along with the nonlinearities generated from extraneous sources.

Attempts have been made to characterize the materials using wave
mixing technique to overcome the above mentioned limitations.
Although theoretical study on nonlinear wave mixing has been started
since 1960s [3–8]. Croxford et al. reported the use of non-collinear
tional Metallurgical Laboratory,
@gmail.com (A.K. Metya).
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mixing technique to the ultrasonic measurement of material nonline-
arity to assess plasticity and fatigue damage [9]. They showed that this
technique is potentially more attractive for assessing material state than
other nonlinear ultrasonic techniques. Demcenko et al. showed the
sensitivity of non-collinear wave mixing for nonlinear ultrasonic detec-
tion of physical ageing in PVC [10]. Physical ageing state in PVC was
characterized using both linear ultrasonic measurement technique and
the non-collinear ultrasonic wave mixing technique. Works have also
been done of using collinear wave mixing technique for nonlinear ul-
trasonic measurement to characterize the material damage conditions
[11,12]. All these studies reported the use of bulk wave mixing to
characterize the state of the damage in materials but little research has
been done on Lamb wave mixing to assess the material degradation.
Initial feasibility study of Lamb wave mixing has been performed by D J
lee et al. [13]. Some aspects of guided wave mixing have also been dis-
cussed by C J Lissenden et al. [14]. Very recently J Jingpin et al. used the
nonlinear Lamb wave mixing technique for micro-crack detection in
plates [15]. But no work has been performed to use the Lamb wave
mixing technique to assess the localized deformation in materials. In this
work, it has been demonstrated the use of nonlinear Lamb wave mixing
technique to detect the location of maximum localized deformation in
material during creep much prior to its failure.
Jamshedpur 831007, India.
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Fig. 1. Dispersion curves for 2mm modified 9Cr.-1Mo steel; (a) Phase velocity,
(b) Group velocity.
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2. Mixing of lamb waves

2.1. Lamb wave propagation and mixing

The phenomenon of elastic waves in thin plates in isotropic, stress
free, linear and homogeneous media is given as Rayleigh- Lamb fre-
quency relations [16].

tanðqhÞ
tanðphÞ ¼ �

 
4k2pq

ðq2 � k2Þ2
!�1

(1)

where, the exponent �1 indicates the symmetric and anti-symmetric
modes respectively and p2 ¼ ω2

c2L
� k2 and q2 ¼ ω2

c2T
� k2, h is the plate

thickness, ω is the angulay frequency, k is the wave number, cL and cT are
the longitudinal and transverse waves velocity respectively.

So, it can be seen from eqn. (1) that the propagation of Lamb waves is
dispersive in nature and having multi-modal characteristics.

Now, the simple extension from linear dynamic elasticity to nonlinear
equation requires the introduction of third order elastic constants-l, m,
and n (Murnaghan's constants considering the materials to be hyper-
elastic [17]). The nonlinear equation of motion for the displacement
field u for an isotropic elastic material without any viscous dissipation
takes the form [18].
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Rectangular co-ordinates have been used in terms of x1, x2, and x3;
subscripts appearing twice in a single term indicate summation over 1, 2,
and 3.

Considering the elastic wave propagating along x1 direction with a
particle displacement along x1 & x2 direction, eqn. (2) can be expressed
in scalar Cartesian notation as:
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where,

c2p ¼
λþ 2μ

ρ
; c2s ¼

μ
ρ
; β ¼ 3ðλþ 2μÞ þ 2ð2mþ lÞ

2ðλþ 2μÞ ; γ ¼ λþ 2μþ m
2ðλþ 2μÞ

λ and μ are Lame's constants.
These types of nonlinear boundary value problems [eqn. - (4) & (5)]

can be solved by perturbation method where the solution (u) is expressed
as the sum of two terms

u ¼ uð0Þ þ uð1Þ

where u(0) is the primary solution and u(1) is the secondary solution. The
solution u (2) is the perturbation solution due to nonlinearity and it is
assumed

��uð0Þ��≫��uð1Þ��
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Now during wave mixing experiment, if the excitation signal consists
of two sinusoidal signals of different frequencies, the primary solution
can be expressed as

uð0Þðx; tÞ ¼ Aðx2Þeiðω1 t1�k1xÞ þ Bðx2Þei½ω2ðt�ΔTÞ�k2x� (6)

where, k1, ω1, A & B are the wave number, angular frequency and am-
plitudes of the two sinusoidal waves respectively andΔT is the time delay
that has been given to one of the fundamental waves in the exciting signal
based on the group velocities of the Lamb wave modes for spatial scan-
ning. Substituting eqn. (6) into nonlinear part of eqns. (4) and (5) results
in terms containing the exponential functions

ei½ðω1�ω2Þt�ðk1�k2Þx�; e�i½ðω1�ω2Þt�ðk1�k2Þx�; ei½2ðω1 t�k1xÞ�; ei½2ðω2 t�k2xÞ� for ω1 > ω2

These terms correspond to possible second order harmonic waves at
(ω1þω2, k1þk2), (ω1- ω2, k1-k2), (2ω1, 2k1) and (2ω2, 2k2) which are the
sum and difference combinational harmonics respectively [18] along
with harmonics of individual fundamental wave. Nonlinear acoustic
parameter can be expressed as 4Aω1þω2=ABk1k2x

[15]. In this work, the

amplitude of the sum frequency component has been evaluated for 04
various positions for varying propagation distances to assess the localized
deformation and is denoted as Aω1þω2.
2.2. Selection of fundamental frequencies

Fig. 1 shows the phase velocity and group velocity dispersion curves
of Lamb waves for 2mm thick modified 9Cr-1 Mo steel plate. Due to
multimodal and dispersive nature of Lamb waves, fundamental mode is
desirable for any NDE application [15]. Accordingly, in this work, S0
mode was chosen due to its almost non-dispersive nature and uniform
mode shape through-out the thickness in lower frequency regime. Fig. 2
shows the frequency response of the undamaged sample during excita-
tion by the frequency starting from 0.28MHz to 0.91MHz based on the
encircled region as shown in Fig. 1. 0.41MHz and 0.73MHz have been
chosen for this study for getting the resonance condition as these two
frequencies give almost equal amplitude responses; although 0.61MHz
gives maximum amplitude, but it is not used because it may suppress the
other frequency components. Moreover, the difference of group velocity
is more between the selected frequency components as it'll help to do the
spatial scanning more reasonably (see Table 1).

3. Finite element simulation for lamb wave mixing

3.1. Finite element model

Propagation of Lamb wave and mixing were simulated using simu-
lation software COMSOL Multiphysics. A 2mm thick steel plate was
taken for finite element simulation in two-dimensional domain consid-
ering plane strain condition. Degraded material properties were given in
a localized region on the plate assuming the region is hyperelastic.
Murnaghan material model was adopted for this degraded region where
strain energy function was defined with respect to Lame's constants (λ



Fig. 2. Frequency response of the as-received sample.

Table 1
Shows the phase velocities and group velocities of the selected two fundamental
frequencies of S0 mode.

Frequency Phase velocity (Cp) Group velocity (Cg)

0.41MHz 5422m/sec 5345m/sec
0.73MHz 5314m/sec 4938m/sec

Table 2
(Material properties used for simulation).

ν (Poisson's ratio) 0.31

ρ (kg/m3) 7850
E (Pa) 2.1� 1011

λ (Pa) 1.15� 1011

μ (Pa) 7.69� 1010

l (Pa) �3� 1011

m (Pa) �6.2� 1011

n (Pa) �7.2� 1011

Table 3
(Parameters used for finite element simulation).

ω1 (MHz) 0.41

ω2 (MHz) 0.73
ω1þω2 (MHz) 1.14
le (mm) 0.23
Δt (sec) 4.4� 10�8
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and μ) and higher order elastic constants (l, m & n) [17] to represent the
microstructural degradation or nonlinearity in the material. Rest of the
portion in the plate was given linear material properties. Two hanning
windowed 05 cycle time domain tone burst signals of frequencies 0.73
and 0.41MHz were applied as pressure transient loading on one face of
the plate in positive x-direction as shown in Fig. 3. Table 2 shows the
material properties that were used for simulation.

The denser mesh, higher order element and smaller time step are
desirable for accurate simulation result; but the calculation time will be
very high and it will cost more in terms of computer resources. So, op-
timum mesh size and time step were chosen for this study in order to
obtain high accuracy and efficiency. The sizes of the elements were
chosen in such a manner that the desired propagating as well as gener-
ated frequency could be spatially resolved. Accordingly, as recommended
in Ref. [19], 20 nodes per wave length were taken for the element size (le)
and 20 points per cycle of the highest frequency component were taken
for effective temporal resolution (Δt).

le ¼ λmin
20

andΔt ¼ 1
20fmax

The various parameters used for finite element simulation are shown
in Table 3.
Fig. 3. Schematic of the plate with localized degradation for finite
element simulation.
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3.2. Simulation results

3.2.1. Study-I
In this study, mixing of two selected Lamb wave modes was allowed

to occur at degraded region as well as at linearly elastic region (non-
degraded) to see the generation of sum/difference frequency components
in presence of nonlinearity within the material. Fig. 4 (a) shows the
applied signal that consists of two selected fundamental frequencies of S0
mode and the fft of the triggered signal [Fig. 4 (b)] shows the presence of
0.41 and 0.73MHz. The time delay was given to 0.41MHz signal (based
on the group velocities of the two signals) such that the mixing could
occur at the desired localized degraded region (Fig. 3). The simulation
was performed such that the interaction of the excitation waves occurs at
the degraded region and also away from degraded region. Fig. 5(I–(a))
shows the simulated received signal and corresponding fft [Fig. 5 (I- (a))]
when interaction occurs at degraded zone. The generation of sum fre-
quency (ω1þω2¼ 1.14MHz) component can be seen in Fig. 5 (I- (a)) due
to the interaction of the fundamental waves in presence of nonlinearity of
the degraded region; but no side-bands (sum or difference frequency
component) are observed [Fig. 5 (II- (a) & (b))] in case of interaction at
non-degraded i.e. linearly elastic region. Amplitude of this third wave
depends on the degree of degradation and so this technique could be used
for assessing the localized microstructural degradation due to damage.

3.2.2. Study- II
In this study, mixing of two selected fundamental Lamb wave modes

was allowed to occur at 04 different positions as shown in Fig. 6 to
evaluate the mode shapes of the generated mixed signals. The four
mixing positions on the sample were modeled using Murnaghan's
nonlinear elastic constants as given in Table 2. The points of applying the
pressure load as well as the receiving point were kept constant; but time-
Fig. 4. (a) Excitation signal, (b) fft of the excitation signal showing the presence
of 0.41MHz and 0.73MHz.



Fig. 5. [I- (a)] Received signal in presence of nonlinearity, [I- (b)] fft of the
received signal showing the presence of side-bands of the primary fundamental
waves; [II-(a)] Received signal in absence of nonlinearity, [II-(b)] fft of the
received signal showing the absence of side bands.

Fig. 6. Schematic of the sample showing 04 mixing positions along the
gage length.

Fig. 7. Excitation signals and received signals for 04 different positions
including time-delay.

Fig. 8. Evolution of mode shape for each mixing position.

Fig. 9. Schematic of the experimental set-up.
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delay was given to one of the fundamental waves according to the group
velocities of the waves and mixing point positions. All interaction points
were separated by 10mm from each other. Two fundamental signals of
0.41MHz & 0.73MHz along with the received mixing signals from 04
different positions have been shown in Fig. 7. Time delays given to one of
the fundamental signals have also been mentioned in the figure. The
profiles of the mode shapes as can be seen in Fig. 8, show that the u-
displacements (x-component) are approximately constant through the
thickness indicating that the damage evaluation can be done through-out
the cross section of the plate, whereas v-displacements (y-component)
are varying along the thickness; but both the mode shapes are symmetric
in nature.

4. Experimental

4.1. Experimental procedure

A high power ultrasonic pulser RAM 5000 from RITEC Inc was used
for generating high voltage tone burst signals of 5 cycles at exciting
frequencies of 0.71MHz and 0.43MHz. Two commercial piezoelectric
transducers of central frequencies of 1MHz were used for generating and
receiving the signals. Fig. 9 and 10 show the experimental set-up for the
nonlinear Lamb wave mixing experiment and the frequency response of
the transducer respectively. One transducer was fixed to perspex-made
wedge of angle 28� to generate the desired frequency components and
the other one was directly fixed to the surface of the sample to detect the
mixing signal. Light lubrication oil was used for coupling the transducers
with the wedge as well as with the sample surface.

A flat dog-bone specimen made of modified 9 Cr–1Mo steel of
thickness 2mm was used for the creep experiment and Lamb wave
mixing. A schematic of the specimen used for creep as well as Lamb wave
92
mixing study is shown in Fig. 6. As can be seen, four different positions
were taken with 10mm separation with each other for mixing the Lamb
waves to evaluate the localized plastic deformation during creep. Creep
testing was done at 100MPa stress and 650 �C temperature in constant
load creep testing machine (make: MAYES; model: TC-30) with a lever
arm ratio of 1:15. Interruption was done at various time intervals to
evaluate the amplitude of the sum frequency component, Aω1þω2 for the



Fig. 10. Frequency response of the transmitter as well as receiver.
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four defined positions on the gage length of the sample.
Fig. 12. Second set: Variation of normalized Aω1þω2 (evaluated from wave
mixing) along the gage length with interruption time and corresponding creep
4.2. Results & discussions

Two sets of experiments were done for this study. In the first set, the
interruption was done at 10 hs, 15 hs, 20 hs, 50 hs, 100 hs, 200 hs, and
300 hs. The sample failed at 396 h. Fig. 11 shows the variation of
normalized Aω1þω2 at the 04 positions along the gage length after every
interruptions. The corresponding strain at each interruption has also
been shown in this figure. Normalized Aω1þω2 [N (Aω1þω2)] was defined
as the ratio of the value of Aω1þω2 at each interruption time to the highest
value of Aω1þω2 obtained during all interruptions. It is seen that there is
not much change in N (Aω1þω2) till 50 h; slight increment has been started
at 100 h that corresponds to 1.3% creep strain and thereafter there is a
rapid increase in N (Aω1þω2) after 100 h. Finally, the sample failed at the
location (between position-1 & 2) where this amplitude of the sum fre-
quency component that represents the material degradation (so
Fig. 11. First set: Variation of normalized Aω1þω2 (evaluated from wave mixing)
along the gage length with interruption time and corresponding creep strain;
inset: a view of the failed sample after 396 h.
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increased nonlinearities) as damage progresses, was increased
substantially.

In the second set of experiment, the number of creep interruption was
increased to check the behavior of the variation of N (Aω1þω2) along the
gage length. Accordingly, the interruptions were at 6 h s, 10 h, 15 h, 20 h,
27 h, 50 h, 76 h, 100 h, 200 h, 300 h, and 400 h; the sample failed at
440.5 h. Fig. 12 displays the variation of normalized Aω1þω2 at the 04
defined positions with time and creep strain. Here also, it is seen that
initially there is very little change in N (Aω1þω2) till 100 h; increase in N
(Aω1þω2) started from 200 h with a creep strain of 1.8% and drastically
increased further at the position between 2 & 3. It also follows the same
trend as the first set where the sample fails at the position where
maximum Aω1þω2 obtained much prior to its failure. Fig.13 shows the
creep curves and curves of creep strain rate for both set-I & II. In all these
cases it can be seen that the value of N (Aω1þω2) drastically increases
approximately after 45-50% of the damage with a corresponding creep
strain of approximately 1.8%. Evolution of 1.14MHz (ω1þω2) frequency
component with creep interruption time at position- 3 of the second set is
strain; inset: a view of the failed sample after 440.5 h.

Fig. 13. Creep curves and creep strain rate variation for both the sets
of samples.



Fig. 14. Evolution of sum frequency component (1.14MHz) at various creep
interruption time of position-3.
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shown in Fig-14. Nonlinear ultrasonic technique enables to characterize
the onset of plastic damage during any type of deformation process much
earlier than the sample fails. If this plastic deformation is non-zero, then
finite deformation theory introduces third order elastic constants that
define the nonlinear Hooke's law (nonlinear stress-strain behavior).
These third order elastic constants depend on the dislocation accumu-
lation/behavior within an isotropic material during damage. Nonline-
arity in the Hooke's law arises due to anharmonicity of the lattice and due
to the dislocation displacement. Hikata et al. [20] derived the expression
of the amplitude of harmonic component (A) due to contribution from
dislocations. They showed that A is related to elastic constants of the
materials and dislocations morphologies, neglecting attenuation of the
fundamental and harmonic waves, by

A ¼ 1
4

�
E2

E1
þ 12

5
ΩΛE2

1L
4R3

μ3b2
σ
�
:ðA1kÞ2:x

where, E1 and E2 are the appropriate moduli of the second and third
order respectively. Ω ¼ conversion factor from shear strain to longitu-
dinal strain; 2 L¼ dislocation loop length; R¼ resolving shear factor;
μ¼ shear modulus; b¼ Burgers' vector; σ¼ applied small longitudinal
stress; A1¼ amplitude of the fundamental wave; k¼wave vector and
x¼wave propagation distance. E2=E1

is the amplitude due to the lattice

anharmonicity and 12
5

ΩΛE2
1L

4R3

μ3b2 :σ represents the amplitude due to dislo-

cation displacements. During the progress of creep damage, localized
variation in dislocation evolution within the material introduces the
change in third order elastic constants and increased material non-
linearities locally.

As the mixing of two primary fundamental waves generates a third
new wave related to the sum frequency of fundamental waves in the
presence of nonlinear interaction within the material due to dislocation
evolutions, this Lamb wave mixing could be the potential technique for
localized damage detection.
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5. Conclusions

� Nonlinear Lamb wave mixing using nonlinear ultrasonic technique
was done to assess the localized deformation during creep.

� Generation of sum frequency component of the fundamental primary
waves was investigated in finite element simulation in presence of
third order elastic constants that represent the material non-linearity
in a pristine homogeneous plate.

� Experimentally it was seen that onset localized deformation could be
predicted much prior to its failure.

� Increase in amplitude of the sum frequency component was started
after 45-50% damage of the sample.
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