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Abstract 

A parametric approach is described for tracking the evolution of particle size distribution with 
time in batch grinding in micron and sub-micron range. The approach is based on an 
asymptotic self-similarity solution to population balance equation of grinding. The possible 
presence of non-linearity in the fine grinding regime is captured by a modification to the model 
formulation scheme. It is assumed that the breakage rate is a function of the grind time and 
therefore, indirectly of the time-dependent mean, median or a percentile size. It is shown that 
the self-similar character is preserved under a wide class of functions that can in principle 
describe the non-linear characteristics of the comminution process. The resulting parametric 
model describes the evolution of particle spectra. Several sets of published data are employed 
to validate the model. 
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INTRODUCTION 

Preparation of fine particles of subsieve size by comminution is an energy intensive unit operation that 
is nevertheless widely employed in a variety of material processing industries. Because typical 
tumbling mills are quite inefficient and uneconomical for subsieve grinding, alternate technologies 
which operate with higher energy density, such as, jet mill, circular fluid energy mill, stirred media 
mill, centrifugal mill, pin mill etc. are preferred. Stehr (1988) provides a list of various products which 
are commercially processed in fine grinding mills, including minerals, pharmaceutical powders, 
printing inks, paints and pigments, fertilizers, ceramics, food products and others. 

Quantitative understanding of the evolution of particle size distribution is a necessary step for proper 
process control and optimization of the grinding operation. For conventional tumbling mill type of 
grinding operations, various schemes of Particle Population Balance (PPB) are used to track the 
grinding kinetics. A continuous-size continuous-time population balance model of size reduction in a 
batch process over the entire particulate mass is described by the following integro-differential 
equation (Kapur 1972; Austin et al 1984). 

am( ,t)  
k(x,t)tn(x,t)+ fk(v,t)[

8B(x,v)
]m(v,t)dv 

ax 

x 

Where m(x, t) is the weight fraction of particles in the size range x to x+dx at grind time t. The two 
major parameters of the model are — 

1. Breakage rate function, k(x,t) which is the specific rate of breakage of particles of size x at grind 
time t (refer Equation (2)). 

2. Cumulative breakage distribution function, B(x,v) which is the fraction of particles of size x and 
finer formed when a unit mass of particles of size v are broken (refer Equation (3)). 

(1) 
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In theory, solution to Equation (1) provides the evolution of particle size distribution in the form of a 
density function. In practice, however, a close form solution is feasible only for highly specialized and 
simplified forms for k(x,t) and B(x,v) functions, as discussed later. 

Subsequently, PPB approach has been extended to fine grinding applications. Kapur et al (1996) while 
studying the role of dispersants in kinetics of stirred mill grinding showed that product distributions of 
stirred media mills follow self-similarity and the evolution of product size distributions could be 
described by the well-known G-H scheme (Kapur 1987). Nair (1999a and 1999b) and Berthiaux and 
Dodds (1999) showed that G-H scheme could be used to characterize grinding in fluid energy type 
mills. Tuzun et al (1995), Berthiaux et al (1996) and Shinohara et al (1999) demonstrated that 
different forms of Rosin-Rammler-Bennet distribution can represent the particle size distribution in 
stirred media milling. 

A majority of the published work assume that the specific breakage rate function is time invariant and 
is given.by k(x). This is also denoted as linear or first order grinding (Austin 1984). Deviation from 
first order grinding kinetics, as defined above, could be due to either time invariant but more complex 
grinding parameters than those discussed in Equations (2) and (3) or inherent non-linear grinding 
characteristics of the system. In the latter case, it is argued that in many instances the breakage 
characteristics are influenced by the surrounding particle population (Austin et al 1984; 
Tangsathikulchai 2003; Fuerstenau et al 2004; Bilgili and Scarlett 2005). The breakage rate can either 
accelerate or decelerate depending on the material type, size distribution and fineness, type of milling 
technology, and operating conditions. 

In this communication, we present a model based on the extension of the asymptotic self-similarity 
solution to population balance model (Equation (1)). It is assumed that the breakage rate is a function 
of the instantaneous size distribution which, in turn, is captured by the time-dependent mean, median 
or a percentile size of the particle mass. The resulting parametric model describes the evolution of 
particle size distribution. Several sets of published data from various research groups are employed to 
test the model. 

MATHEMATICAL MODEL 

Kapur (1972) showed that for the following functional form of the grinding parameters 

k(x) = Ax" 	 (2) 

and 

B(x,v) = (3) 

Equation (1) exhibits a similarity solution - 

m(x,t)=(—u,10)\)4
u(t)) 

	
(4) 

Where ui(t) is the characteristic size of the distribution denoted by the first moment of the mass-
diameter density function. Z(x/ui(t) is a similarity function of scaled particle size x/ui(t). Kapur (1972) 
showed that when the breakage distribution function is further specialized in following manner 

B( .X ) (X )1'  — = — 
V 	V 

	 (5) 

Equation (4) has an explicit close form similarity solution given by 
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, 	, 	x m(x,t)=( 
u
K

t)I u(t) 	
exp 

 aK„ u,(t) 
1 	x (6) 

Equation (6) defines the particle size distributions of comminuted particles in most general way in a 
density distribution form. For example, Rosin-Ranunler-Bennet equation is readily obtained from 

Equation (6) by setting K, =b = a , K0 =11 a, and the characteristic size u, (t) oc x0.632, (t). 

By imposing the following boundary conditions on Equation (5) - 

0 

fm(x,r)dx =1 
	

(7) 

and considering the first moment of the size distribution as 

f
x m(x,t)dx = u, (t) 
	

(8) 
0 

Kapur (1972) showed that 

	

a 	 (9) K, — 

	

(aK„)' a 	I a) 

and 

K  _1[  f(b1 a)  la 	 (10) 

a r((b +1)1 a) 

Kapur (1972) transformed the similarity function Z(x/ u, (t)) into Z(x u, (t)) in order to 

illustrate the similarity solution in terms of cumulative size distributions, F(x,t), as 

F(x,t) = Z(x 1 u,(1)) 	 (11) 

Thus self-similar or self-preserving distributions at different grind times collapse on to a single curve 
when cumulative size distributions are plotted as a function of scaled particle size. The self-similarity 
solution is an asymptotic solution, which becomes increasingly valid with grinding time as the 
influence of feed size distribution is progressively smoothened out with time due to repetitive 
breakage. Equation (11) suggests that the self-similar distribution is driven forward in time solely by 
the mean size of the distribution. For a given percentile, P, Equation (11) also suggests that 
x p(t) cc u, (t). 

Kapur (1971; 1972) emphasized that the similarity solution in Equation (6) is not affected by a time 
dependent breakage rate function of following kind that could arise when coarse particles are ground 
preferentially or protected by the surrounding fines, 

k(x,t) = Axa  0(t) 	 (12) 

The function OW may represent a wide-class of functions that in principle describe the non-linear 

characteristics of the comminution process. In the following discussions we restrict ourselves to one 
such functional form given below. 

0(t)=u,(0- 
	

(13) 
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Where c is a constant. Kapur (1971; 1972) further showed that the rate of change of mean size of the 
distributions in similarity solution is given by 

aul(t)  = AK0(u,(t))a-c.1  
at 

Substituting the value of K0  from Equation (10) into Equation (14) and integrating Equation (14) 

from start of grinding to a grind time, t results in 

(15) 
u ,(0)  u(t)- 

(I+ A(.1  c a) 	j 
) 

(u,(0)rt 

110,-o 

a,,r((b+1)1a) 

Where WO) represents mean size of the virtual feed size distribution that is self-similar with the 
asymptotic self-similar size distribution at longer grind times. The concept of virtual feed is rather 
important here since the idea of self-similarity may not be applicable for real feed size distributions, 
which are far removed from the eventual self-similar distributions. 

Equation (15) can be approximated at higher grind times as 

1 	 (16) 
)14a-a) 

C)  rot a)  (41 
a ) rp+1)/a) 

The cumulative finer size distribution, F(x,t), which gives the mass fraction of material passing 

size, x at grind time, t is given by 

F(x;1)= fm(x,t)dx 	 (17) 

Substituting Equation (4) into Equation (17) gives 

F(x,t) = JZ(p)dp 

Where the dimensionless size, p is given by 

p = x ul (t) 

Further, substituting the value of similarity function, Z(p) from Equation (6) yields 

F(x,t) =
(.1( ,(alCo )b  la ac. 

.1 sa exp(-s)ds 
a 

Where S is a transformed dimensionless particle size defined by 

s= 	 
aK0  

(14) 

u, (t) - 

(18)  

(19)  

(20)  

(21)  
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Substituting the values of Kb  Ko  and p from Equations. (9), (10) and (19) into Equation (20), after 
simplification gives 

rib ,( 	

)

a  if ((b +1)1 a)r) 
a u,(t) 	roi a) 

F(x,t) — 	  
F(b / a) 

Equation (22) suggests that the evolution of particle size distributions in self-similar non-linear batch 
grinding systems is defined by a regularized gamma distribution. A combination of Equations (22) 
and (16) yields a parametric model with four parameters namely A, a, b and c, which can be estimated 
from a given set of experimental data through optimization routines by minimizing the sum of squares 
of errors between model and experimental values. 

In many instances grinding time and specific energy expended are interchangeable (Kapur 1996; 
Austin 1997). For the experiments that are conducted at various specific energy inputs, E instead of 
the grind time, t , the grind time in Equation (22) can be replaced by specific energy input to the mill 
in order to optimize the model parameters. 

Equation (11) suggests that under self-similarity 

ui  (t) = g xso (t) 	 (23) 

Where g scales the 50th  percentile size of the distribution into the mean size of the distribution. Now, 

substituting Equation (23) into Equation (22) results in 

b x nr((b+1)1a))1  
a x„(t) 	g T(b I a) 

F(x,t)— 	  
/ a) 

Equation (24) expresses the evolving self-similar distributions in terms of the median size. At 50 h̀  
percentile, Equation (24) reduces to 

r(b (1-((b -1-1)/ a)T) 
a' g T(b1 a) 

— 0.5 	 (25) 
T(b I a) 

The value of scaling factor g can be obtained by solving Equation (25) numerically which when 

substituted in Equation (23) gives the mean size of the self-similar distributions for corresponding 
measured median size. 

RESULTS AND DISCUSSIONS 

Estimation of Particle Size Distribution 

The proposed scheme was validated with eight sets of published data for various materials ground in 
stirred ball mills. Table 1 gives the parameters of model for these data sets as estimated by a non-
linear fit algorithm. Table I also includes the sum of least squared errors (SSE) achieved for the best 
fit as well as the mean size to median size scaling factor, g . It should be noted that the feed 

distribution was not included in the estimation of model parameters. The parameter estimation scheme 
proposed in this paper is reasonably less cumbersome. Unlike the G-H solution for the size discretized 

batch-grinding equation (Kapur 1987), which has two parameters Gi  and 	for each ith  size-class 
particles, the self-similarity solution proposed in this paper has only four parameters to describe the 
entire grinding process. 

(22) 

(24) 
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Figure 1 shows a comparison of the model predictions with experimental data for parameter sets #3 
for limestone and #6 for chrome sand in Table 1. The model simulations are in good agreement with 
experimental data. Figure 2 illustrates the self-similarity nature of the experimental data on a scaled 

size, x / x50  (t), for the data depicted in Figure 1. 

Table 1: Estimated Model Parameters for the Stirred Mill Grinding Data Taken From Literature 

SI 
No 

Material 
ground 

Size distributions 
measured at 

various units of 

Model Parameters 
SSE g Reference 

a b c A 

1 

2 

3 

4 

5 

6 

7 

8 

Chalcopyrite 
concentrate 

Cupric Oxide 

Limestone 

Diamond 

Hydragillite 

Chrome Sand 

Base metal 
ore 

Base metal 
ore 

Specific energy, 
kWh/t 

Specific energy, 

Specific energy, 
kWh/t 

Grind time, hrs 

Grind time, mins 

Specific energy, 
kWh/t 

Specific energy, 
kWh/t 

Specific energy, 
kWh/t 

0.34384 

0.52270 

0.78843 

1.66501 

0.69318 

0.93335 

1.26584 

2.69208 

3.42057 

2.80548 

1.32202 

1.10230 

1.34666 

1.11292 

1.17441 

0.84274 

-1.62473 

-1.43455 

-0.72864 

-0.33247 

-2.02930 

-0.57936 

-0.48806 

0.74970 

2.103E-03 

1.298E-03 

1.036E-03 

1 236E-01 

0.0235 

0.0333 

0.0103 

0.0568 

0.0263 

0.0118 

0.0067 

0.0070 

1.4294 

1.3114 

1.4271 

1.2009 

1.4957 

1.4224 

1.2651 

1.1730 

Fig 3 of Herbst and 
Sepulveda, 1978 

Ftge7p uolfv  H ear b s1t9a7n8d 

Fig 11 of Herbst and 
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Shinohara et al, 
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Berthiaux et al, 1996 

Tuzun et al, 1995 

Fig 9 of Kapur et al, 
1996 

Fig 10 of Kapur et al, 
1996 

7.803E-05 

5.338E-04 

1.382E-03 

4.099E-04 

Particle size, x gm Particle size, x pm 

Fig. 1: Comparison of Experimental and Calculated Data for the Data Sets #3 for and #6 of Table 1 
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Estimation of Breakage Rate 

Figure 3 presents the variation of breakage rates of different size particles with the grinding energy 
input as represented for data sets #2 for cupric oxide and #8 for a base metal ore of Table 1 (refer 
Equations (12) and (13)). Essentially, the plot depicts that the rate function can increase or decrease 
monotonically as grinding progresses. The experimental data for cumulative percent retained on a size 
as a function of grinding energy input shown in Figure 4. For data set #2, the breakage rate decelerates 
whereas for data set #8, breakage rate accelerates. The different forms of non-linearity encountered in 
breakage rates have been discussed in literature (Austin et al 1984; Biligili and Scarlett 2005). 
Furthermore, the model calculations in Figure 3 suggest that the non-linearity in grinding starts right 
from the beginning of the process, unlike the proposed mechanism of "false time" to describe non-
linearity in the later stages of grinding (Yekeler et al 2001; Tangsathitkulchai 2003). 

Energy input, E kWh/t 

Fig. 3: Estimated Non-Linear Breakage Rate Function as a Function of Input Energy for the Data Sets #2 
and #8 of Table I 
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Fig. 4: Non-Linearity of Experimental Data As Depicted on a Semi-Log Plot for the Data Sets of Figure 3 

Estimation of Mean Size in Fine Range 

It is difficult to get a complete measurement of the particle distribution in the fine size range, which 
poses problems in the estimation of the mean size of the distribution. The proposed model overcomes 
this difficulty. Since the model tracks the evolution of particle distributions in the submicron range well, 
Equation (16) can be used to characterize the mean size of the evolving distributions. Alternatively 
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Equation (23) can be used to estimate the mean sizes of the evolving self-similar distributions. Figure 5 
shows the decrease in the mean size of evolving self-similar product size distributions for the data sets 
#5 for hydragillite and #8 for a base metal ore of Table 1 as grinding proceeds. 

# 5 Hydragillite 

in 25 

6 • 20 
2 

15 - 

10 - 

5 	 
0 
	

5 	10 	15 	20 	0 	10 	20 	30 	40 	50 

Grind time, t mins 	 Energy input, E kWh/t 

Fig. 5: Estimated Mean Size of the Evolving Self-Similar Product Size Distributions for the Data Sets #5 
and #8 of Table I 

Proportionality of Percentile Sizes 

Figure 6 shows the decrease in median, x50  and 80th  percentile size, x80  of the measured size 

distributions with respect to input energy or grind time for the data sets #1 for chalcopyrite 
concentrate and #5 for hydragillite of Table 1. Also in Figure 6, calculated value of u/  for these data 
sets using Equation (16) are shown. For t or E >> 0, the plots show power law dependence (refer to 
Equation (16)) with slope equal to (-1/(a-c)) as suggested by Table 1 parameters. The parallel trends 
in the presented values in Figure 6 indicate that xso and x80, and Lei  values are indeed proportional to 
each other. Figure 7 shows a linear relationship for (a-c+I) values calculated from the model with 
those obtained by linear-regression of x30  and x80 values of the measured size distributions, which also 
shows that the different percentile sizes of self-similar distribution are proportional to each other. 
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Fig. 7: The Correlation between Model (a — c + 1) Values with Estimated (a — c +1) Values From 

Regression of X50  and X80  Values of Measured Size Distributions 

Energy-Size Relationships 

Equation (14) when expressed in terms of input grinding energy, E, gives the general relationship 
between the mean size and input grinding energy. Since the mean size is proportional to any percentile 
of the distribution, Equation (14) represents the general energy law of grinding (Kapur 1987). Kick, 
Bond and Rittinger have proposed (Austin, 1984) the value of exponent to be 1, 1.5 and 2 
respectively. However, the current model reveals that for fme grinding range this exponent is more 
than 2.5 ((a-c+ 1) values from Table 1). Therefore it is inferred that conventional energy-size 
relationships do not hold good in the fme grinding range. 

Furthermore, Equation (15) can be written in terms of grinding energy expended, E as 

E = 1) (26)  
K2  (141 	E)3Ya-r)  ( 

Where, 

= 
r(b I a) 	 .  (27)  ja 

 (u,(0))' 
+1)1 a) a ,',r((b 

K3 =(u, (0)Y"- )̀  (28)  

At higher reduction ratio, Equation (26) reduces to a familiar form of classical energy law 

E = 	(6,1,(E))-(')) 
K
fiC  (29)  

2  

Here iii(E) can be replaced by a percentile size by invoking the proportionality relation between them 
(similar to Equation (23)). Hence it is verified that Charles law holds good for fine grinding in stirred 
mills for different operating conditions. This finding is in the same line of experimental results 
reported in literature (Sepulveda and Herbst 1987; Gao et al 1995). 

CONCLUSIONS 

A parametric approach of modeling fine particle grinding data using similarity solution of population 
balance equation is presented in this article. The model has several prominent features as listed below 
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1. The model incorporates non-linear breakage rate parameter and it is successfully tested on 8 sets of 
stirred media milling data obtained from published work involving different kinds of material and 
milling conditions. The model is also simple where numbers of estimated parameters are only four. 

2. The parametric model is quite general. Popular Rosin-Rammler-Bennet distribution can be derived 
from it under special conditions. Furthermore, a general particle size-energy relationship can be 
deduced from it. It also reveals that Kick, Rittinger and Bond's law cannot characterize the 
grinding operation in very fine range, as the size-energy exponent is more than 2.5. 

3. Breakage rate estimated from the model parameters shows that non-linear breakage rate prevails 
right from the beginning of the grinding. 

4. Lastly, a major advantage of the model is that it allows one to estimate the mean size from the 
measured data in the fine size range, which otherwise is difficult to characterize in the absence of 
knowledge of complete distribution. 

NOMENCLATURE 

A 	parameter in Equation (2) 
a 	 exponent in Equation (2) 
b 	exponent in Equation (5) 
B(x,v) 	cumulative breakage distribution function 
c 	parameter accounting non-linearity in Equation (13) 
E 	specific energy input to the mill, kWh/I 
F 	cumulative percent passing 
g 	scaling factor for 50th  percentile defined in Equation (23) 

G-H model parameter 
11; 	G-H model parameter 
Ko 	constant defined in Equation (10) 

constant defined in Equation (9) 
K2 	 constant defined in Equation (27) 
K3 	 constant defined in Equation (28) 
k(x) 	time independent breakage rate function 
k(x,t) 	time dependent breakage rate function 
m (x, t) 	particle size distribution in density form at grind time t 
p 	reduced particle size defined by Equation (19) 
P 	percentile 
R 	cumulative percent retained 
s 	transformed dimensionless particle size defined by Equation (21) 

grinding time 
Ul 	mean size of the particle distribution 
v, x 	particle size, microns 

x50 , x80 	passing sizes for 50th  percentile (median) and 80th  percentile 

Z, Z 	similarity functions 

GREEK SYMBOLS 

7,1" 	gamma functions 

0 	non-linearity function defined in Equation (12) 
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