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1.0 INTRODUCTION 

There are two kinds of stresses that an object may be subjected to: 

(a) Applied Stress - which is due to external forces acting on the 

object. 

(b) Residual Stress - which remains in the object after all the applied 

forces have been removed. 

The basic cause of residual stress is non-uniform plastic flow due to 

previous operations. Some specific causes are heat treatment, welding, 

mechanical operations such as cold working, grinding & so on. Residual 

stresses must form a balanced force system within the object, which 

implies that a residual compressive stresses in one part of an object must 

be balanced by residual tensile stress in another part. 

Residual stresses may be harmful or beneficial. When tensile in nature, it 

adversely affects the fatigue properties in particular & ductility in general. 

When it is compressive in nature, as for example, in carburizing or after 

induction/flame hardening, the fatigue properties improve. Another 

example of beneficial compressive stress is the steel reinforced pre-

stressed concrete. 

Residual and applied stresses add algebraically, as long as their sum does 

not exceed the elastic limit. It is therefore necessary for a designer to 

know the level and nature of the residual stress so that he could prescribe 

safe levels of applied stress for an engineering component. 
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Residual stresses could be introduced into metals and other materials 

through any of the processes. Examples (Fig.1) show some of these, as 

given below : 
(a) Mechanical : Surface Working, Forming, Assembling, 
(b) Chemical : Oxidation, Corrosion, Electroplating. 
(c) Thermal : Welding, Casting, Heat Treatment, and 
(d) Combinations of above : Cold Working induced phase transformation. 

In the present article, an attempt will be made to cover the Residual 

Stresses generated through thermal means and with special emphasis on 

Residual Stresses through Heat Treatment. There are soyeral methods of 

measuring residual stress. Some of these are: 
(a) Mechanical Relaxation, 
(b) Acoustic Wave Techniques, and 
(c) X-Ray Diffractometry. 

Basic principles of these will be dealt with in the paper with some details 

of the X-Ray Diffractometry. 

2.0 THERMAL PROCESSES & RESIDUAL STRESSES 

Residual Stresses arising from thermal processes could be classified as 

those with: 
2.1 Thermal gradient alone, and 
2.2 Thermal gradient in combination with phase transformation. 

These could be dealt with in some details. 

2.1 Residual Stresses With Thermal Gradient Alone 

Examples of this variety include quenching, casting & welding. 

2.1.1 Residual Stresses during Quenching:  

If we consider the volume change due to thermal gradient only, at the 

start of ,cooling the surface cools faster than the core (interior). The 

temperature difference between the core and surface increases upto 

certain time till it reaches a maximum. As a result, after a short time, the 

surface contracts more than the interior creating a pressure against the 

core. Since the core does not contract by the same amount, this creates a 

condition of tension in the rigid outer shell & compression in the core; 

irreversible plastic flow can then occur. The picture is given in Fig.2a. 

With time, there is a further lowering of temperature & situation changes. 

Further decrease of temperature results in longitudinal compressive 
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stress at surface and tensile stress at the core. Fig.2a is a schematic 

representation of distribution of residual stresses over the diameter of a 

quenched bar in longitudinal, tangential and radial directions. The actual 

value of the peak residual stress in quenching can increase by the (i) 

Quenching temperature and (ii) Quenching power of the coolant, (ill) 

Section size, (iv) Modulus of elasticity, and (v) Coefficient of thermal 

expansion. 

2.1.2 Residual Stress During Casting:  

As in the case of quenched cylinders, castings which undergo no phase 
transformation would normally have compressive stresses at the surface & 
tensile stresses in the interior. The situation however can get 

complicated through the following: 

(a) mechanical restraint that a mould can offer as in permanent 

moulding or die-casting, 

(b) artificial cooling rates (i.e. chills) introduced into the casting, and 

(c) section-size of casting. 

2.1.3 Residual Stresses in Butt Welding:  

Considering a flat plate, butt welded along a line, the longitudinal stress 

(parallel to the weld line) a stress pattern as given in Fig.1(C) can result. 

This can be explained as follows: as the weld metal & heat affected zone 

shrink during cooling, they are restricted by the cool surrounding areas. 

Longitudinal tensile stresses thus result in the weld zone, balanced by 

compressive forces in the nearby region. 

2.2 Residual Stresses During Thermal Gradient And Phase 

Transformation (Quench Hardening) 

Here, the effects of phase transformation are superimposed on those from 

thermal gradient, as during Quench Hardening of steels. This can be 

dealt with in two situations: 

	

2.2.1 	Quenching of Direct Hardening Steels, and 

	

2.2.2 	Carburizing of Steels. 

As an aid in understanding the situation, the specific volumes of various 

phases associated with transformations in steels are given in Fig.3. 

P-3 



2.2.1 Residual Stress During Quenching of Direct Hardening Steels: 

The residual stress pattern developed depends upon various factors. 

However, every product of austenite decomposition, i.e., martensite, 

bainite or pearlite would be associated with a volume increase (Fig.3). 

The situation is schematically depicted in Fig.2(C & C1) for a through-

hardened steel. Fig. 2(C2) depicts the picture where the steel is partially 

hardened. Upon quenching a steel, martensite forms instantly on the 

surface layer, associated with volume expansion, where as the interior 

remains as austenite because it is still hot. Afterwards when the interior 

austenite changes to martensite, the volume expansion due to 
transformation is restricted by the hardened surface layer resulting in 

compression in the core and tension at the surface. At the same time 
thermal contraction in the core is hindered by the hard surface layer. 

Fig.2(c) also depicts the situation when net-volume expansion is larger 

than thermal contraction. In some cases this type of volume change may 

cause plastic deformation leading to distortion of the heat treated part or 

even localized rupture (Quench Cracking). 

Large size of the component and high cooling rate contribute to large 

thermal contraction as compared to volumetric expansion. For a fixed 

quenching rate the thermal gradient decreases with decreasing cross 

section resulting in decrease of residual stress. 

Fig.4 shows residual stress patterns along with CCT diagrams of DIN 22 

Cr 44 steel of the surface (s) and centre (C) of different diameter. The 

complexity of the residual stress pattern depends upon (i) component 

size (ii) quenching rate and (iii) hardenability of steel. The residual stress 

pattern can be modified with different transformation characteristics or, 

during tempering and finish machining operations. 

2.2.2 Residual Stress During Surface Hardening:  

During carburizing and quenching of low carbon steels the core materials 

transform to ferrite and pearlite with attendant stress relaxation of 

stresses developed due to any transformation. This occurs around 600 -

7000C. Below 3000C the carburised case transforms to martensite with 

minimum stress relaxation. Residual compressive stress develops in the 

case with maximum at the surface. The presence of retained austenite 

causes the maximum residual stress to develop at a depth below the 
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surface (Fig.5a). The amount of retained austenite depends on (i) steel 
composition (ii) carbon content of the case (iii) quenching temperature 

and (iv) the severity of quenching. The case/core interface region 

experiences the reversal sign of residual stress. Fig.5b describes the 

residual stress for a carburised 9340 steel. The position of maximum 

compressive stress depends upon several factors such as, total case 

depth, severity of quench, steel hardenability etc. 

In nitriding also a compressive residual stress develops in the surface 

layer. Low temperature nitriding imparts more residual stress as 

compared to high temperature nitriding. 

In nitro carburising residual compressive stresses increases with 

hardness and depth of diffusion zone and decreases with increasing 

carbon and alloy content. 

In induction hardening the core remains unchanged while the martensite 

forms on the surface causing a surface residual compressive stress. As in 

carburizing, the residual compressive stress usually increases upto a 

certain depth below surface. Fig. 6 shows the situation for induction 

hardened and tempered 1045 steel. Transition to tensile stress takes 

place near the hardness drop off between case and unhardened 

surrounding material and then fades away to zero stress with the increase 

in distance. 

2.3 Control Of Residual Stresses: 

Table I gives typical values of maximum residual stresses in the surface 

hardened steels, showing clearly the influence of tempering on residual 

stress level. Tempering at around 1500C retains 50 - 60% of the residual 

stresses developed during quenching. Higher tempering temperatures 

greatly reduces the surface compressive stress. Stress relief temperature 

around 6000C is used for mechanically deformed parts or, parts with 

tensile residual surface stresses. Dangerous level of residual tensile 

surface stresses may also be removed by gentle grinding on the surface. 

3.0 Methods Of Stress Measurement 

3.1 General Methods 
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In the Hole-Drilling technique, care has to be taken to ensure avoiding 

introduction of other stresses (there are also micro hole drilling 

techniques at the research level which are more or less non-destructive). 

The basic principle of the test lies in the fact that when a hole is drilled 

on to a stressed body, there is stress relaxation that can be computed 

from strain gauges fixed on to the surface (for measuring the strain in the 

immediate vicinity of the hole). The method in general is described as, 

'semi-destructive' since the small hole (1.5 - 3mm in dia & depth) drilled 

does not impair t1 integrity of the component in many cases. The 

drilled hole can also be plugged subsequently. 

In the Acoustic Wave propagation method, one depends on the fact that: 
a= M.e+C.e2+ 

a - (M+Ce).e M'e, where M, C are constant similar to modulii. Again, 

V = KV(M+Ce) 
where, 	V = sound velocity; c = state of strain; M = elastic constant 
and K = material constant 

Thus, one can determine strain values (e) and using that, the stress (a). 

The Electro Magnetic Techniques (EMT) are broadly based on three 

methods: Barkhausen noise, Non-linear harmonics and Magnetically 

Induced Velocity Changes (MIVC). The principles of only one of them, 

namely, the Barkhausen noise is shown in Figures 7 to 9. The magnetic 

Barkhausen method is dependent on the stress as well as relative 

direction of the applied magnetic field of the stress direction (Fig.10). 

The figures show a typical stress dependence of the inductively detected 

Barkhausen noise in a ferrous material. In this case, where the magnetic 

field and the stress are parallel, the Barkhausen amplitude increases with 

tension and decreases with compression. However, in the case where 

these two are perpendicular, the opposite result is obtained. The 

behaviour shown in Fig.10 holds good for material with a positive magneto 

striction co-efficient. The inductively detected Barkhausen method 

reveals stress effects occurring near the surface (about 0.1mm). The 

effective stress measuring range is upto about 50 per cent of the yield 

stress of the material; the Barkhausen noise gets saturated at very high 

stress levels. 
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Apart from using magnetic effect of Barkhausen noise for stress 

determination, some research has also been done on the acoustic effect of 

Barkhausen noise in which the magnetic field is applied parallel to the 

stress direction. However, such data do not show a distinct trend for 

compression and tension regions - the signal can show a maximum 

(Fig.11). The acoustic Barkhausen noise therefore cannot distinguish 

tension from compression. Research is still on, in this area. 

The magnetic Barkhausen measurement can be done within a few 

seconds. Continuous measurement at a slow scanning speed 

(10mm/second) is also possible. Preparation of surface is generally not 

required. The method can be made field-useable. However, one should 

keep in mind that the signals of Barkhausen tests are also sensitive to 

factors not related to stress, such as microstructure, heat treatment or 

material variation. It is therefore necessary that a careful calibration of 

the data is done to improve the reliability. Examples of inductive 

Barkhausen noise technique include measurement of residual welding 

stress, grinding damages in bearings and residual hoop stress in railroad 

wheels. 

3.2 Residual Stress Measurement By X-Ray Diffractometry: 

Some of the salient features of the measurement of the residual stress 

using )(RD are: 

• basically non-destructive. 

• only surface stress (degree of penetration is about 10-15 u) can be 

measured. However, by etching out layers, it is possible to examine 

interior surfaces; but in this case, the method becomes destructive 

(and allowances for removal of upper surfaces to be made). 

• no stress free samples are ordinarily required. Stress measurement 

can be done representing macro-level (surface) or micro-level in 

individual phases. 

The basic principle of (surface) macro-residual stress lies in the fact that 

there is a shift in the peak of an X-ray line, proportional to the amount of 

stress; thus interplanar distance acts as the transducer. On the other 

hand, the micro residual stress is primarily dependent on broadening 

(increase in mid-width) of an X-ray line. One can examine the principle 

by starting with: 
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Bragg equation 2d Sin 0 = nX 

where, d = interplanar distance; 0 = Bragg angle; X. = wave length 
of X-ray radiation 

Differentiating the equation, Mid = -Cot 0/A0 

Therefore, for the same strain ( Ad/d), shift (AG) will be high (accuracy 

high for high angles, cot 0 low). Thus one uses a high angle line. 

Typically for steel, one could use Cr Ka  radiation & 211a plane that 

occurs around 152 degrees (20). Broadly, for the accurate stress 

measurement, one requires: 
* correct values of X-ray elastic constant (XEC) specific to the 

appropriate plane (in the above example, 211 plane) 
accurate line position determination. 

The XEC are determined for the specific planes by applying known 

stresses on to samples. Further, the apparent peak position does not 

match with the actual peak position. There are several methods for 

determining the actual peak position. 

One of the most popular is passing a parabola through points which are 

within 85 per cent of the apparent peak intensity; prior to this, the 

necessary corrections (absorption, polarization, etc.) are made on the 

intensity of points. There are also methods which use the centroid of a 

line profile as the indicator of the peak position. 

The operating equation for stress (a) measurement is given as: 

e E 	1 	it 
(y41  = 	20y) Coq 	2 — - 

'I/ 180 
where, E, v = Young's modulus & Poission's ratio respectively for the 

chosen crystallographic plane 

0.1._= Bragg angle at Ill = 0 position (Iv is the angle between 

sample perpendicular & plane perpendicular); = Angle of 

rotation from iv = 0 position 

The slope of the plot between A20 & Sin2v yields the strain 

The main developments in the technique over the last decade encompass 

the following: 

Use of smaller tubes and position sensitive detectors for field use. On the 

software side, the developments include taking measurements on both 
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positive and negative rotation and computing the shear stress from the 

data. 

The advantage with position sensitive detector lies in the fact that one 

can scan the entire line profile in a matter of seconds and accumulate 

sufficient counts for high accuracy. There are mobile/portable units now 

available for making use of all the features mentioned above. A high 

multiplicity line [ 732 + 651 ] is also used with MoKa  in textured steels 

for averaging out the effect of texture & yielding a better linearity 

between A20 & Sin2iv. 

(+) 
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Table '1 	A Compiled•Summary of the Maximum Residual Stresses in Surface 
Heat Treated Steels28  

Heat Treatment 

Residual 
Stress 

(Longitudinal) 
(Nlmnr) 

Carburized at 970°C to 1 mm case with 
0.8% surface carbon 

Direct-quenched 280 
Direct-quenched, —80°C subzero 

treatment 340 
Direct-quenched, —90°C subzero 

treatment, tempered 200 

Carburized and quenched 240-340' 

Carburized to 1.1-1.5 mm case 190-230 
at 920°C, direct oil-quench, no temper 400 

Carburized to 1.*1-1.5 mm case at 
920°C, direct oil-quench, tempered 
150°C 150-200 

Nitrided to case depth of about 0.S mm 400-600 
800-1000 

• 	Induction-hardened, untempered 1000 
Induction-hardened, tempered 200°C 650 
Induction-hardened, tempered 300°C 350 
Induction-hardened, tempered 400°C 170 

Steel 

832M13 
(type) 

805A20 

805A20 
805A17 

80SA17 

897M39 
905M39 

Cold- 
rolled 
steel 
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