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High Speed Steels (HSS) are a tipect 11 class of high alloy steels and are 

used mainly for the manufacture of utting tools such as taps, dies, tool 
bits, drill bits, milling cutter, rearm ,  r, broaches, long run punches and 

dies etc. High speed steel gets its name from the fact that it is used to 

cut at high speed. The first high speed steels were tungsten type 

developed by Robert Mushet in UK and FW Taylor in USA towards the end 

of last century. In 1904 addition of vanadium was patented by crucible 

steel company leading finally to today's best known grade, the 18/4/1 

steel. The addition of cobalt in HSS was first reported in 1912 by Becker 

in Germany. Due to the shortage of tungsten and its increase in prices, 

Mo bearing high speed steels were introduced in around 1930 in USA. 

Cutting performance of the tools made of HSS primarily depends on the 

properties such as hot hardness, wear resistance and toughness. 

MECHANICAL PROPERTIES 

flot Hardness: 	HSS are characte Ised by its ability to retain its 

hardness even at high temperature. Fig. 1 is showing the hot hardness 

value over a range of high speed steel, The hot hardness of HSS obtained 
due to very slow growth of M2C any MC carbides below 5500C while 

temperature increases to above 600°( coarsening of carbides starts. The 

variation of room temperature hardness and hot hardness at different 

temperatures is shown in Fig. 2. 

Wear Resistance: This property depends on the hardness at the operating 

I emperature, HSS microstructure is ;omposed of a large proportion of 

uniformly distributed undissolved tia I carbides in a relatively less hard 
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matrix. The undissolved and precipitated carbides are the main 

contributors to impose wear resistance. 

Toughness: A wide range of toughness can be obtained by controlling 

austenitision and tempering treatments. An inverse correlationship is 
obtained with hardness changes resulting from different tempering 

temperature in un-notched test data. Impact toughness value decreases 

with increasing austenitising temperature. 

These properties could be obtained by selecting a balanced composition, 

various processing stages and final heat treatment. The heat treatment is 

almost last operation of the afore-said tools and considered as the most 

critical area of technology because of its direct effect on tool life and 
'detect and indirect financial loss if the tools may not have its necessary 

properties after heat treatment. 

THE HIGH SPEED FAMILY 

The alloying elements added in Fe-C system to create high speed steels 

are tungsten, molybdenum, chromium, vanadium and for specific 

application cobalt. 

The three main groups of high speed steels are 

(1) The tungsten high speed steel 

(2) The molybdenum high speed steel 

(3) The tungsten-molybdenum high speed steels 

The other classes of high sped steels could be made by addition of cobalt, 
and increasing the carbon and vanadium content to the above mentioned 

three main classes. HSS with carbon content more than 1.25% and 

vanadium content more than 2% could be separately grouped by 

commercial designation "Super high speed steels". Various grades of high 

speed steels are shown in Table-1 as per the AISI classification system. 

ROLE OF ALLOYING ELEMENTS 

Carbon 	The carbon content in high speed steels varies from 0.70 to 

1.60%. Carbon is added in steels for increasing the hardenability, proper 

matriK hardness by forming martensite. It forms complex carbides with 

W, It9o, Cr, V and provides high wear resistance because of the higher 
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Table-:1 The AISI classification for high speed steel 

Molybdenum Types-Identifying Elements, in % 

Type 

M1 
M2 
M3 Class 1 
M3 Class 2 
M4 
M6 
M7 

C 

0.80' 
0.85;1.00' 
1.05 
1.20 
1.30 
0.80 
1.00 

W 

1.50 
6.00 
6.00 
6.00 
5.50 
4.00 
1.75 

Mo 

8.00 
5.00 
5,00 
!i,00 
•.58 
5.00 
11.75 

Cr 

4.00 
4.00 
.1.00 
1.00 
I.00 
!XX/ 
1 00 . 

V 

1.00 
2.00 
2.40 
3.00 
4.00 
1.50 
2.00 

Co 

- 
- 
- 
- 
- 

12.00 
- 

Popular 
Designation 

1.5-8-L1 
6-5-2 
6-5-2.4 
6-5-3 
5.5-4.5-4 
4-5-1.5-12 
1.75-8.75-2 

M10 0.85;1.00' - 8.00 i.00 2.00 - 0-8-2 
M15t 1.50 6.50 3.50 1.00 5.00 5.00 6.5-3.5-5-5 
M30 0.80 2.00 8,00 ‘.00 1.25 5.00 2-8-1.25-5 
M33 0.90 1.50 9.50 '.00 1.15 8.00 1.5-9.5-1.15-8 
M34 0.90 2.00 8.00 100 2.00 8.00 2-8-2-8 
M35t 0.90 6.00 5.00 .1 00 2.00 5.00 6-5-2-5 
M36 0.80 6.00 5.00 .1 00 2.00 8.00 6-5-2-8 
M41 1.10 6.75 3.75 125 2.00 5.00 6.75-3.75-2-5 
M42 1.10 1.50 9.50 :1.75 1.15 8.00 1.5-9.5-1.15-8 
M43 1.20 2.75 8.00 .1.75 1.60 8.25 2.75-8-1.6-8.25 
M44 1.15 5.25 6.75 4,25 2.25 12.00 5.25-6.25-2.25-12 
M45t 1.25 8.00 5 JO .i 25 1.60 5.50 8-5-1.6-5.5 
M46 1.25 2.00 11,1 5 - )0 3,20 8.25 2-8.25-3.2-8.25 
M47 1.10 1.50 9.! o ' 	(5 1.25 5.00 1.5-9.5-1.25-5 
•omor carbon contorus may bo a•ailablo 

Tungsten Types-Identifying Element':, 

Type 	C 	W 	Mu 

l» 	moo, 1970 Stool Products Manual 

r 	V 	Co 
Popular 

Designation 

T1 0.75 18.00 4 	0 1.00 - 18-0-1 
T2 0,80 18.00 	- 4,110 2.00 - 18-0-2 
T4 0.75 18.00 	- 4,00 1.00 5.00 18-0-1-5 
T5 0.80 18.00 	- 4.00 2.00 8.00 18-0-2-8 
T6 0.80 20.00 	- 4.:)0 1.50 12.00 20-0-1.5-12 
T7t 0.75 14.00 	- 4.00 2.00 - 14-0-2 
T8 0.75 14.00 	- 4.00 2.00 5.00 14-0-2-5 
T9t 1.20 18.00 4,,.0 4.00 - 18-0-4 
T15 1.50 12.00 	- 4,' 	..) 5.00 5.00 12-0-5-5 
- other carbon conicats a9y Do nyailablo 	Inol Melo., rd I , Ji nary 1970 Stool Products Manual 

Some typical molybdenum-type hlijtl porton lance high speed 
tool steel compositions produced III 	Jpe Ind Japan 
(other than grades corresponding lo /MI tyi ■es) 

Identifying elements, in % 

Group V Co 
Popular 

Designation 

A 1.65 7 5 5 11 7-5-5-11 
6 1.50 7 4 .4 5 7 7-4-5-7 
C 1.25 10 4 4 3 10 10-4-3-10 
D 1.30 9 5 4 3 11 9-5-3-11 
E 1.40 9 3 4 4 12 9-3-4-12 
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hardness of carbides. About 30 percent of carbon is dissolved in matrix 

and rest of the carbon forms complex alloy carbides. 

Tungsten Tungsten is one of the most important alloying element in 
high speed steel. It forms complex alloy carbide (M6C), where M stands 

for metals and C for carbon. Tungsten is responsible for high wear 

resistance and red hardness in high speed steels when dissolves in 

matrix, it retards to soften on tempering. In dissolved form tungsten 

increases hardenability. 

Molybdenum 	Molybdenum has similar effect as tungsten has. It can 

be substituted for tungsten. 1% tungsten is equivalent to 1.6 to 2% 

molybdenum. Molybdenum bearing HSS can be hardened at lower 
temperature than tungsten type HSS. Mo-bearing high speed steel has a 

tendency towards grain growth during austenitising. A narrow 

austenitising temperature range is to be controlled during austenitising 

compared to W-type high speed steel. In addition Mo-type high speed 

steel has great tendoncy towards decarburization. Retained austenite in 

Mo-bearing HSS is less stable on tempering compared to W-type high 

speed steel. Temperature of tempering and time required for tempering 

in Mo-type steel is lower than the W-type HSS. 

Chromium 3-5% chromium is added in almost all high speed steel 

mainly to promote hardenability. In annealed steel chromium forms 
M23C6 carbide. Chroimum carbide completely dissolves in austenite in 

the temperature range between 950 - 10000C during austenitising 

treatment. Chromium in HSS also reduces oxidation and scaling during 
heat treatment and cutting process. 

Cobalt 	Cobalt is added in HSS maximum upto 10%, although a few 

special steels have higher additions. 	It raises the austenitising 

temperature and melting point. The prime effect of cobalt in HSS is to 

increase the hot hardness, which permits to improve cutting efficiency. 

The cobalt in HSS does not form carbides, most of it dissolves in the 

matrix. In annealed steel 88% of cobalt remain in matrix whereas in 

martensite the amount of cobalt increases to 95%. Cobalt steel slightly 

reduces the toughness and has a tendency towards decarburisation during 

heating cycle. 
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Vanadium Vanadium in HSS forms stable MC or M4C3 . Vanadium 

carbide remains almost insoluble at normal austenitising temperature 

while other carbides such as M23C6 or M6C mostly dissolve during 

solutionising. Among the alloy carbides in HSS, vanadium carbide shows 

maximum hardness. Table-2 shows the hardness of different carbides in 

HSS. The vanadium carbide at iustenitising tremperature remains 

insoluble and restricts grain growl 

TABLE 2: Micro Hardness of Carbidns 

Material 	 A!fprox. Knoop Hardness 

Vanadium Carbide 	2b20 

Iron Carbide 	1 I 50 

Chromium Carbide 	11•20 

A1203 	 2.40 

Martensite Matrix 	790 

Vanadium content in steel impit bc carefully balanced with respect to 

carbon otherwise partial fei 	om or chromium depletion of the 

matrix can occur depending on kviiei lier the ratio of V : C is high or low 

respectively. Each I% increafie oh vanadium in base composition of 

0.55%C, 1%V, carbon content in '3 ef to,be added by 0.25%. 

Effect Of Other Alloying Elements 

The effects of other alloying elements are discussed below : 

,Aluminium About 0.01% (max.) niiiy be present for decoddation and grain 

refinement treatments. Attempt=; we e made to replace part of W or Mo 

but has not beeisuccessful coninierci 

Boron 	It may be found in stocls boron containing inoculant is used. 

Boron content even at 0.008% lead difficulties in hot working and 

-educes strength due to austenin. !ra la coarsening. 

-2opper 	Maximum copper oat! at is HSS in 0.25%. 	It has 

detrimental effects as far as 	performance and hot workability is 

.:oncerned. 
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Manganese Maximum manganese content must be upto 0.35%. Larger 

amounts of Mn may lead to quench cracking and austenite grain growth at 

normal austenitising temperature. 

Silicon 	Maximum Si content in HSS is 0.35% and has no effect. 

Large amount of Si if added may cause brittleness of HSS. 

Nickel 	Nickel tends to promote decarburisation and austenite 

stabilisation. It is undesirable in HSS. 

Titanium Titanium forms MC-type carbide and TiC is harder than VC. 

It can be added in place of vanadium and has similar effect like vanadium. 
It inhibits grain growth and acts as innoculants for improving carbide size 

and distribution in HSS. 

Niobium It increases secondary hardening response but there is no 

report to have beneficial effects over vanadium. 

Tantalum If added more than 6%, difficult to harden due to the 

formation of stable carbides. It significantly improves secondary 

hardening peak and hot hardness stability is upto 650 C. 

Sulphur 	Added upto 0.25% to improve machinability. 

Selenium Also added to improve machinability upto 0.25%. 

CARBIDES IN HSS 

Three types of carbides are observed in high speed steels. The tyngsten 
and molybdenum is found predominantly in the form of M6C type double 

carbides although chromium also remains in these carbides. The M23C6 

carbides are chromium rich and can dissolve iron, tungsten and 

molybdenum. MC type carbides are vanadium rich which are extremely 

hard and abrasion resistant. 

Various carbides formed in HSS steels its volume % and mean 

composition of carbides are given in Table-3. 
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Table-3: Various carbides, its volume % and mean 
composition of ( arbides 

Carbithis Volume % 

M23C6 M6C MC Total 

M2 Annealed 9 16 3 28 
Oil Quenched' 0 7.5 1.5 9 

Ti Annealed 9 18.5 1.5 29 
Oil Quenched*" 0 10 0.5 10.5 

Matrix Composition, in % 

C Fe Mo Cr V 

142 Annealed 0.0 95.5 0.3 0.7 3.3 0.2 
Oil Quenched' 0.5 89.0 2.0 3.0 4.6 1.0 

Annealed 0.0 95.3 1,5 0.1 3.0 0.2 
Oil Quenched- 0.5 85.3 8.6 0.; 4.4 1.0 

'from 2225 F (1220 C) 
	

Aftur Avorbach 
Irorn 2350 F (1290 C) 

For a higher carbon version of M2 and for the more rocently 
developed M41, a similar situation is seen to exist: 

Types Present 

Carbides 
Mean Composition, in % 

C 	Fe 	W 	Mo Cr V Co 

Total 
Weight 

% 

M2 (1.1% C) Annealed M7C3, MAC, V,IC: 1  4.9 	25.6 	26.9 22.9 11.4 8.2 22.4 
Oil Quenched" MAC, V4C. 3.5-  25.4 	37.9 20.7 2.7 8.3 13.0 

M41 Annealed M7C3, MAC, V461  5.0 	25.4 	30.2 16.5 12.8 8.8 1.2 21.6 
Oil Quenched* MAC, V4C3  3.5-  19.5 	42.7 19.8 2.5 8.9 1.4 11.0 

Matrix 
Composition, in % 

C 	Fe 	W Mo Cr V Co 

M2 (1.1% C) Annealed 96.5 	0.26 0.15 1.9 0.01 - 
Oil Quenched* 0.74 	88.9 	1.5 2.9 4.1 0.9 - 

M41 Annealed - 	90.3 	0.38 0.11 1.9 6.4 
Oil Quenched* 0.78 	83.3 	2.4 1.6 4.4 1.0 5.7 



HEAT TREATMENT 

The cutting performance of any tool is critically related to its heat 

treatment. The heat treatment is usually carried out at the end of the 

manufacturing processes, at which stage a single tool may have a value of 

more than 20 times from its initial prices. Less serious errors in heat 

treatment are less noticeable but occur very frequently. A little mistake 

may cause distortion or cracking which directly involve in financial loss. 

Some of the errors are difficult to detect without sophisticated 
instruments and testing but can result in short tool life or premature 

failure during operation. To avoid these the tool manufacturer must have 

a system of heat treatment which minimizes the possiblity of minor 
variation of critical factors during heat treatment. 

The raw materials available in the market are in the spheroidized 

annealed form i.e. carbides are uniformly distributed in the form of 

spheroids in the ferrite matrix. The chemical composition of the raw 

materials should have very close to its specification. 

Heat treatment of high speed steel is done in the following steps: 

1. Preheating 

2. Austenitising 

3. Step quenching/martempering and air cooling 

4. Tempering 

The furnaces available for heating or austenitising the tools are muffle, salt 

bath, fluodized bed, and vacuum. Here the heat treatment cycles are 

considered only with the help of salt bath with electrically heating type. 

Preheating 

Austenitizing temperature of all high speed steel is above 11500C. In 

order to eliminate cracking or distortion that may arise from thermal 

shock, high speed steels are preheated first at 250-3500  C in air and 

second at higher temperature at 800 - 8500  C and it is carried out in 

neutral medium like salt bath to avoid any scale formation and 

decarburization. Again, austenitising temperature of the high speed steel 

is very near to solidus temperature, so it is better to reduce the 

austenetising time as much as possible by preheating the sample at lower 

temperature. 
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First p.elicatingi, in air is done normally to eliminate explosion hazards 

when moisture enters in high tempel uture molten salt. The soaking time 

for the tools should be sufficiently long so that entire piece of the tool is 

become thermal equilibrium. 	Preheating ultimately reduces 

decarburization, grain coarsening (by reducing the austenitising time) and 

uniform dissolution of carbides in austenite solution that also depends on 

the uniformity and size of the carbide:i. 

Austenitising 

Fig.3 shows the phase diagram of 18-4-1 high speed steel. The alloying 

elements 18% W, 4% Cr, and 1% V increases the eutectoid temperature 

from 723 to 8400 C and eutectic temperature from 1130 to 13300C. The 

eutectoid composition decreases from 0.80% to 0.25 and the maximum 

solubility of carbon decreases from 2% to 0.7%. The necessary secondary 

hardening of the steel could be achieved if as much carbide as possible to 

dissolve in austenite. The austenitising treatment of HSS is carried out 

just below the solidus temperature to obtain the correct balance of 

dissolved and undissolved carbides and to control the amount of carbon 

and alloying elements in austenite. Fig.4 shows the effect of austenitising 

temperature on the amount of chromium, tungsten and vanadium 

lissolved in the matrix due to the soli ition of the carbides. 

E-ligh speed steel tools are austenitist d in the range between 1150-13000  

C temperature depending on the alloying elements present in that steels. 

Austenitizing treatment can be carried out in different furnaces like, 

muffle, salt bath, fluidized bed or vacuum. The cutting performance of the 

tools are entirely dependent on the austenitising treatment. Lot of 

troubles may occur if the tools are not austenitised properly as discussed 

below : 

Three basic parameters are to be maintained properly during 

austenitising, which are as follows: 

(a) Temperature : The temperature of the furnace should be controlled 

as close tolerance as possible. It Is better to check the temperature 

controller before austenitization treat ment. There are two possibilities if 

the temperature is not properly coati oiled. Either under heating or over 

heating may occur due to improper austenitising treatment. The effect of 

proper austenitising, under heating and over heating is shown in Fig.5 in 
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which Rock well-C hardness vs. tempering temperature is plotted. Initial 

hardness of the over heated tools are lower than other two cases. But 

after tempering its secondary hardness peak becomes much more than 

other two cases. In this case due to higher austenitising temperature 

most of the carbides dissolve into the solution, therefore, the amount of 

retained austenite will be more in the as quenched condition shows lower 

hardness. 	But after tempering retained austenite will become 

martensite/bainite and the hardness is increased. In the case of under 

heating sufficient amount of carbides may not dissolve in austenite, the 

hardness of the steel after quenching is higher due to its lower retained 

austenite and largeti)amount of undissolved carbides which are having 

higher than maxtrix hardness. 

(b) Time : Soaking time at the austenitsing temperature is also a very 

important factor like temperature. Sufficiently long time is required_ to 

dissolve the alloy carbides in austenite. But time should not be too long so 

that grain coarsening may take place. Generally, soaking time at the 

austenitising temperature also depends on several factors like, 

austenitising temperature, alloy content, section size, thermal 

conductivity of the materials to be austenitised, preheating temperature 

of the materials etc. Large sections, hot worked much lower than the 

smaller one. So larger sections will have larger carbide size than thin 

section. So the time of soaking for larger section will be more than 

smaller one. It is therefore, very difficult to say the exact time of soaking 

mathematically. Experience is still very important in this regard. If the 

time of soaking is sufficientluy large or very low the possibility of over-

heating or under heating may occur due to the several reasons discussed 

already. 

(C) Neutrality Of The Salt Bath 

High speed steels contain mainly carbon tungsten, chromium, 

molybdenumn, vanadium abd cobalt in closely controlled amount. It is 

needless to write that the carbon is the only element to react the desired 

hardness. Whereas, other alloying elements used in HSS for several 

purpose like, secondary hardening, hardenability, hot hardness, 

eleminates temper brittleness, increases wear resistance by forming hard 

abrasion resistant carbides. So any loss of carbon from the surface of the 

steel during heat treatment particularly in the case of milling cutter, 

hacksaw blades etc on a macroscopic scale greatly reduces the cutting 
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performance as heat treatment is the finishing step for these cutting 
tools. Any slight loss of other alloying elements also influence the 

properties. It is well known that the decarburization increases with 

Increasing the working temperature. So special care must be taken to 

avoid any loss ithe aforesaid elements during austenitising. Above 1000 

C bariumchloride plus regenerators are used as salt bath hardning high 

speed steels. The best protection of the surface can be obtained by 

preparing fresh salt bath. The salt bath gradually saturates with oxygen as 

the salt gradually reacts with the oxygen and the oxide film on the tool 

surface. Therefore, it is better to check the salt bath in certain time 
intervals. Whether the bath has been saturated with oxygen or not can be 

checked in several ways. 

(1) By chemical analysis of the melt : Two types of oxides are produced 

in the salt bath, insoluble and soluble. Soluble oxides are 

responsible for decarburization and insoluble oxide can cause soft 

spots. The limits of the soluble and insoluble oxides level are shown 

in Table-4. 

Table-4: 	Oxide Level in Melt 

Maximum soluble oxide Max. insoluble 
level 	 oxide level 

Salt bath 750-9500C 	1% 	 2% 

Salt bath above 10000C 3% average work 

0% top quality work 	5% 

(2) Microexamination : This proces6 is relatively slow but accurate and 

costly, requires skilled assesriment and is consequently done 

occassionally. 

(3) Analysis of carbon : In this I he standard method for operating 
saltbaths at 8500C is to immerse high carbon steel foil or blade for 

about 20 minutes and for 120000 is about 5 minutes. The amount of 

carbon in the foil can be determined quickly with the help of 
appropriate equipments. 

(4) Hardness checking : This process is not very sensitive for detecting 

surface softness. Severe decarburization can, however, be detected 

by hardness checking. 
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(5) Analysis by high carbon blades 	The process is almost same as 

(c). Here the foil or blade is water quenched and after that it is 

checked whether the foil is brittle or not. It is known that high 

carbon steel after quenching is brittle if there is no loss of carbon. 

Otherwise it will not break. This is the easiest and cheapest way of 

checking the neutrality of the salt bath amongst all processes. 

The salt bath is deoxidized by adding suitable regenerators, like methyl 

chloride, silicon, silica, borax, magnesium fluoride, ferrosilicon etc. The 

regenerators react with salt bath oxides and form a sludge. Sludge is 

removed from the bath after deoxidation. The amount of regenerators 

required depend on the bath design and type of work being processed. 
Borax is added normally 4-5% of the mass of the salt bath for operating 

temperature at 750-9000C. 

COOLING FROM AUSTENITISING TEMPERATURE 

To minimize distortion and thermal stresses, high speed steel is 

generally quenched in a salt bath maintaining at about 5500C. The tools 

are being kept in the salt bath to equalize the temperature throughout the 

section and then it is air cooled. Fig.6 shows schematically a full 

hardening cycle for high speed steel heat treatment and Fig.7 shows the 

step quenching or martempering cycle of HSS. 

Tempering : Quenched high speed steel contains tetragonal martensite, 

retained austenite and undissolved carbide. The steel in this condition is 

hard but brittle and dimensionally unstable. The brittleness of this 

microstructure are due to the carbon atoms trapped in the octahedral 

lattice sites of martensite, impurity atom segregation at austenite grain 

boundaries, carbide formation during quenching and residual stresses 

produced during quenching. Tempering is the heat treatment of 

quenched steel to modify the mechanical properties by heating the steel 

in the range of 150 to 700 C. 

Tetragonality of martensite is reduced during tempering and finally it 

forms body centred pubic structure. Carbide is precipitated during 

tempering, is responsible for the secondary hardening of high speed 

steels. 

Retained austenite is also transformed to martensite/bainite during 

tempering, develops again internal stress. To relieve internal stress and 
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to temper martensite formed frrom retained austenite during 1st 

tempering high speed steels are double or tripple tempered depending 

on its alloying elements. All high speed steels are tempered in the range 

of 540 to 560 C. Tempering of high speed steel is done either in salt 

bath or in air circulating furnace. However, salt bath furnace is preferred 

due to its uniform heating. Before tempering as quenched high speed 

steels consist of highly alloyed martensite, highly alloyed retaine austenite 

and undissolved carbides mainly vanadium carbide and M C. 

The changes of as quenched HSS steel are given in Table-5. 

Table-5 : 1st Tempering 

Tempering 
Temperature, 0C 

Structural Changes 

200 

9 
Highly alloyed y 

Ppt. M23C6 

Lower alloy y- 

Ppt. M6C + 

Lower alloy y— 

To martensite 
on cooling 

Highly alloyed 

Martensite 

Ppt. I.  carbide 

Forms Fe3C 

Forms M23C6 

Ppt. M6C 

(Secondary 

hardening) 

Growth of 

Carbides 

425 

540 

M6C and V4C3 

No Change 
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DOUBLE TEMPERING 

oc Structural Changes 

Low alloy retained 	Low alloy martensite M23C6, VC and M6C 
austenite 

200 Precipitate 
e-carbide 

F3C 
425 Precipitate 	 M23C6 

retained austenite 
540 Precipitate 	 M6C 

retained austenite 

1„ Martensite 
Growth of Carbide 
	

No change on cooling 

The formation of freshly formed martensite after 1st or 2nd tempering 

operation results microstresses. Therefore, high speed steel is double or 

triple tempered to reduce micro or macro stresses and to temper freshly 

formed martensite. 

The effect of time and temperature of tempering could be explained by a 

single parameter, called Larson-Miller parameter, LMP, 

LMP = T(C + log t); T = temperature, OK; t = time in hour; C = a 
constant; the value of which depends on the composition of 
austenite. 

The effect of tempering time on the variation of hardness is shown in Fig. 

8. SURFACE TREATMENTS 

The performance of the cutting tools can be improved by many folds by a 

suitable surface treatment of the post heat treated (quenched and 

tempered) tools. Surface treatment improves corrosion resistance, 

hardness and wear resistance of the surface. The various methods are 

discussed below : 
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Steam Tempering 

Steam tempering improves the performance of tool life even upto 50%. 
It produces a blue coloured porous surface layer of iron oxide, Fe304 

usually a case depth of about 2.5pm, The performance of the cutting tool 

is improved as the porous layer has tl te ability to retain thin oil film which 

prevents the welding of the machined chips to the cutting edge. Cutting 

tools are to be thoroughly cleaned before steam tempering. The tools are 

placed in a furnace and temperature is raised to 300:3500C. Steam is 

then allowed to pass under pressure 0.1 - 0.3 atm for about half an hour in 

order to remove air from the furnace chamber. Temperature of the 

furnace will be raised to 5500C for about one hour and then cooled to 

3000C. Immediately after cooling in air from 3000C to room temperature 

tools are dipped in oil. 

Nitriding 

Salt bath nitriding is widely used in heattreated cutting tools to improve 

the cuttting performance of the tools. Nitriding process increases the life 

of the tool to double or even more. Salt bath in nitriding contains sodium 

cyanide, sodium cyanate, sodium carbonate and alkaline chloride. The 

temperature of the bath is maintained about 550 to 5600C. Cyanate 
decomposes and provides atomic nitrogen which penetrates into the 

metal and forms nitrides at the surface. Skin or Surface hardening after 

nitriding may increases to about 1100 HV. This skin hardened layers give 

higher wear resistance, a low coefficient of friction and scoring 

resistance. 

"rufftriding 

'[his process was developed by ICI in UK. Tufftriding bath consists of 

potassium cyanide and potassium cyanate and liberates both carbon and 

nitrogen. The temperature of the salt bath is maintained about 5700C. At 

this temperature nitrogen is more soluble than carbon and diffuses into 

tools. Carbon forms iron carbide at the surface of the tools. A tough 
compound zone of carbides and epsilon iron nitride are formed during 

the process. The tough non-brittle zone formed by this process increases 

resistance to wear, seizing, galling and corrosion. 
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Sulfinuz Process 

This process was developed in France. It is carried out in a molten salt 

bath containing sodium cyanide, chloride, carbonate and sulphite. The 

composition of the salt bath is as follows : 

NaCN 9.4% 

NaCNO 11.7% 

Active Sulphur as Na2S 0.18% 

The sodium cyanate is produced by the oxidation of cyanide and sodium 

sulfide is produced by the reduction of the sulfite as folows : 
4NaCN + 2 02 	 > 4 NaCNO 

Na2SO3 + 3 NaCN 	> Na2S + 3 NaCNO 

In this process surface of the heat treated tools are saturated with carbon, 

nitrogen and sulphur. Sodium cyanate decomposes and liberates nascent 

nitrogen and carbon monoxide. Finally carbon, nitrogen and sulphur are 

picked up by the tools. This process is very successful to obtain excellent 

anti gall and wear properties. It improves resistance to scuffing, hot 

hardness and reduces the tendency to sticking. 

Oxynitriding 

The two methods steam tempering and nitriding can be combined into a 

single method oxynitriding. The operating temperature of this method is 

about 5500C and is carried out in an atmosphere containing a mixture of 

ammonia and water. The diffusion case on oxynitrided HSS consists of an 

external two part-zone of oxides and an internal part enriched in nitrogen 

and oxygen in the matrix. The outer zone of the oxide past is porous and 

is almost pure magnetite and inner zone is consisted of magnetite which 

contain Cr, W, Mo and V. 

The oxynitrided tools enhance wear resistance significantly. 
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HIGH SPEED STEEL BY RAPID SOLIDIFICATION ROUTE 

It is well established fact that the distribution of carbides in steel are the 

most important single factor responsible for producing the desired 

mechanical properties of a high speed steel. The conventional method 

follows a complex solidification processes in steels. The complex 

solidification process produces segregation of carbon and alloying 

elements, rendering the steel unsuitable for immediate use in cutting tool 

applications. In conventional casting practice, the formation of primary 

carbide net work during solidification and cooling to room temperature 

results in a coarse carbide particle distribution. Segregation of steels 

divided into two types i.e. long range macro-segregation occurs over long 
distances and short range micro-segregation occurs within the grains on 

the dendritic scale. Even longtime homogenisation tdreatment are not 

effective to eliminate the macro-segregation while microsegregation can 

be significantly minimised by homogenisation treatment. The segregation 

phenomenon changes the distribution pattern of carbides in HSS. 

Several attempts have been made to develop an alternative processes to 

obtain uniformly distributed carbide ); in HSS. The powder metallurgy 

route has been studied extensively to produce uniform carbide 

distribution and refinement in HSS. 

The first commercial development HSS by rapid solidification route was 

carried out by crucible steel company, USA and Uddeholm in Sweden. 

The liquid steel is atomised by high pressure innert gas or nitrogen jet 

and the droplets cooled at a controlled rate to produce a spherical 

powder. These powders are then consolidated by hot isostatic press and 

then rolling or forging is carried out by conventional route. HSS 

produced by this route gives a finer and more uniform distribution of 

carbides than conventionally produced HSS. HSS produced by this route 

has not shown remarkable increase in cutting performance over 

conventionally produced HSS, although powder metallurgy processes can 

produce extremely fine uniformly distributed microstructures. 

The cooling rate achieved by gas atomisation process are limited to 104  -

105  K/s. 

Heat treatment procedures to be followed are similar to that followed in 

conventional route. 
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The super saturated solid solution phase is possible to produce by 

increasing the cooling rate to 106  - 108  K/s. Such type of cooling rate 

could be achieved using heat removal by conduction into a solid heat sink. 

This process is called splat quenching or cooling process. In this process 

a thin liquid film is rapidly quenched on a solid substrate that has high 

thermal conductivity. 
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