

Seminar On

GROWTH WITH QUALITY CHALLENGES & OPPORTUNITIES FOR FOUNDRY

18th & 19th Fanuary, 2008

TMDC Auditorium, XLRI Campus, Jamshedpur

Organised by : UTE OF INDIAN FOUNDRYMEN

SHEDPUR CHAPTER

TECHNICAL PAPERS 2008

No	Author(s)	Topics
1	Dr. G. L. Dutta	Defects in investment castings -
		causes and remedies
2	Mr. K. N. Rao	Designing of high strength sand
		mix for spin cast rolls to substitute
		imported sand mix (Luverite)
3	Mr. B. N. Verma	To control the hardness variation
	2	within a band of 5 deg. Sh C on
		roll barrel of Hi-Cr rolls
4	Mr. H. S. Mishra	Efficient utilisation of coreless
		induction furnace
5	Miss. Nibedita	Effect of ramming on green
	Moharana & Dr. Sohan	properties of clay bonded
	Lal	moulding sand
6	Dr. Durbadal Mandal	Effect of wt% reinforcement on
		mechanical and
		wear properties of Al-2Mg base
	-	short copper coated steel fiber
		composites
7	Mr. P. Poddar and Dr.	Semi-solid processing a
	K. L. Sahoo	challenging
		technology for automotive
		applications
8	Mr. S.C. Dey	Grinding applications in foundry
9	Dr. Sukomal Ghosh	Overview of moulding materials
10	Mr. J. Pal, Dr. S.	Development of fluxed iron
	Ghorai, Mr. D.P. Singh,	bearing pellets for using in basic
	Mr. M.C. Goswami,	oxygen steel making process
	Dr. D. Bandyopadhyay,	
	Mr. D. Ghosh and Dr.	
	S. Ghosh	
11	Dr. A.K. Vaish, Mr. R.	Energy efficient and eco- friendly
	K. Minj and Dr. S. D.	processes to make Indian
	Singh	foundries globally competitive

Effect of wt% Reinforcement on Mechanical and Wear Properties of Al-2Mg base Short Copper Coated Steel Fiber Composites

Durbadal Mandal

Metal Extraction and Forming Division, National Metallurgical Laboratory, Jamshedpur-831007, India, Email: durbadal@nmlindia.org

Abstract

In the present investigation, mechanical and wear properties on 2.5, 5 and 10 wt% copper coated short steel fiber reinforced AI-2Mg alloy composites prepared by stir casting process were evaluated. Steel fibers were coated with copper by electro less deposition process. It is observed that density and hardness of composites increased with increasing wt% of fibers. The mechanical properties of these composites were measured and the results are correlated with the microstructure observation. It was found that copper coated short steel fiber reinforced composites showed improvement in strength with reasonable good ductility. Tensile strength increased with increasing wt% of copper coated steel fiber but percentage of elongation decreases. It is observed that 10 wt% fiber composites shows minimum strength among the composites due to high porosity. Wear test was carried out using Pin-on-Disc wear testing apparatus. The effects of sliding distance, applied load and wt% of fiber on the dry sliding behaviour were evaluated. Dry sliding wear tests at room temperature revealed that the cumulative volume loss of MMCs were significantly lower than alloy. The coefficient of friction and the wear rate also decreased with increasing fiber content. The worn surface and debris of specimens were examined under scanning electron microscopy (SEM) to find out the wear mechanism. SEM observations revealed that extensive microcracks occur on the surface of the AI-2Mg alloy tested at lower loads. The growth of these microcracks eventually led to the delamination of debris from the alloy surface. The copper coated steel fiber addition tended to reduce the plastic deformation in the surface layer there by reducing the occurrence of microcraking in the MMCs. The wear mechanisms of MMCs are dominated by oxidative wear at lower load but it changed to severe wear when applied load were increased. The composites containing 2.5 and 5-wt% of fibers exhibited a load dependent transition from mild to severe wear with increasing load. In case of 10-wt% fiber composites showed only mild wear even at higher applied load.