TAILORING OF PROPERTIES THROUGH MECHANICAL PROCESSING

A PRACTICAL APPROACH

Organised by
NATIONAL METALLURGICAL LABORATORY
JAMSHEDPUR-831007.
Workshop on TAILORING OF PROPERTIES THROUGH MECHANICAL PROCESSING -- A PRACTICAL APPROACH (PROMPT-94)

23-24 September 1994, N.M.L Jamshedpur

PREFACE

As a part of promoting interaction between the National Metallurgical Laboratory, which is a premier R & D institution under the banner of Council of Scientific & Industrial Research, and the Industries this Workshop has been organised. This is with a view to supplement the basic knowledge on various mechanical processing techniques to practising engineers, who may not have sufficient time and approach to literature.

The present Workshop has been designed in such a way that Academicians like University Professors, Practising Engineers and R & D Scientists can focus the salient basic features and also crucial problems occurring in mechanical working area. Areas like rolling of metals, forging, extrusion, wire drawing, cladding, thermomechanical treatment are covered. Another interesting work on the emerging technology which is a combination of application of pressure in the liquid state, commonly known as 'Squeeze Casting' has also been dealt with.

The lectures delivered during the course of the Workshop have been collated in the form of the present book.
24th September, 1994: SATURDAY

LECTURE SESSION - III

An Overview of Manufacturing Methods of Tin Mill Black Plate (IMBP) and Its Quality Requirements (P.K. Banerjee) . . 0930 to 1015

TEA 1015 to 1045

Technology of Steel Tube Making (V.N. Todi and C.B. Lunawat) 1045 to 1130

Role of Indian Standards in Tailoring the Properties of Wrought Steels (N. Mitra) 1130 to 1215

Processing of Non-Ferrous Alloys Through Extrusion (K. Lal and S.C. Dev) 1215 to 1300

LUNCH 1300 to 1400

LECTURE SESSION - IV

Thermo-mechanical Processing for Tailoring Properties in Steels (B.N. Ghosh and N.K. Das) 1400 to 1445

Superplastic Forming of Metals (M.P. Singh) 1445 to 1530

Evaluation of Hot Workability Through Processing Mhps (V.V. Kutumbarao) 1530 to 1615

COnClUSION SESSION 1615 to 1630

TEA 1630
Workshop on
TAILORING OF PROPERTIES THROUGH MECHANICAL
PROCESSING -- A PRACTICAL APPROACH

PROGRAMME

23rd September, 1994: FRIDAY

REGISTRATION: 0900 to 0930 hrs

INAUGURAL TALK -- Nature: The Best Tailor of Materials by Professor P. Ramachandra Rao
Director, National Metallurgical Laboratory: 0930 to 1030 hrs

VOTE OF THANKS: 1030 to 1100 hrs

LECTURE SESSION - I

Quality Aspects of Special Forgings of Low Alloy Steels	(S. Pandit)	1100 to 1145
Tailoring of Properties Through Squeeze Casting Technique	(P. K. Biswas)	1145 to 1230
Forging Technology -- As Applied to Automobile Industry	(S. R. Sharma)	1230 to 1315

LUNCH 1315 to 1415

LECTURE SESSION - II

Wire Drawing-Influence of Manufacturing Practice on Wire Quality and Properties	(M. Viswanathan)	1415 to 1500
Roll Qualities and Economic Utilization of Rolls	(Umesh Singhal)	1500 to 1545
TEA		1545 to 1600
Roll Cladding and Property Developments	(S. C. Dev and B. N. Ghosh)	1600 to 1645
Mechanical Processing in Magnetic Materials	(V. Rao)	1645 to 1730
The foundation stone of the National Metallurgical Laboratory, Jamshedpur, was laid down by (Late) Pandit Jawarlal Nehru, our first Prime Minister, on September 26, 1950. It aimed at fostering applied and fundamental metallurgical research and development work on indigenous ores, minerals, refractories, ferrous and non-ferrous metals and alloy etc. in relation to their potential applications in Indian mineral and metal industries.

Over the years, NML grew from strength to strength and developed expertise in different areas of metallurgy and material science. Today, the laboratory can boast of an excellent infrastructure in terms of men, materials and equipments. NML has grown into a huge complex employing 220 scientists with a supporting staff of 800, accounting for more than 60% of the total wage bill.

NML could establish a linkage with its user organisations. In the vastly changed context of to-day, quantifying the economic and social benefits of NML's R&D activities and cost-benefit studies in terms of utilisation of the know-hows developed by NML will indeed be a difficult task. As per an estimate made in 1991, NML technologies had yielded savings of Rs 23 crores a year by way of import substitution and another Rs 95 crores by avoidance of losses - besides Rs 671 crores a year through utilization of technologies for value addition.

A Few Achievements:

NML has been involved in exhaustive batch and pilot investigations on various ores and minerals from all over the country. Based on the know-how developed, several mineral processing plants have been commissioned in the country. Detailed characterisation, processing and/or agglomeration studies on Iron Ores and other raw materials of the Ferrous industry for all the Steel Plants of the country have been done by NML. The recent ones being those for Paradip Steel Plant, Orissa: Rastriya Ispat Nigam, Visakhapatnam and Durgapur Steel Plant. Durgapur. In Coal, four froth flotation plants have been set up based on NML's know-how for the recovery of fine coal values at the washeries of TISCO, Jamadoba (West Bokaro); CCL, Gidi and BCCL, Dugda. In the area of Copper Ores, plants based on flow-sheets developed at NML include those at Rakha and Malanjkhand. GMDC, Kadipani (Gujarat) and MPMMC. Chandidongri (Madhya Pradesh) are utilising NML's flow-sheet to produce acid grade fluor spar from low grade ore. India's first commercial plant for producing Magnesium has been put up by Southern Magnesium and Chemicals Ltd., Rajamundry (AP), based on the NML's Technology.
The national creep testing facility at NML has generated a comprehensive database on the high temperature (creep) behaviour of all indigenous steel useful to power plants and methodologies for estimating remaining life for power plant components. NML has developed new grades of manganese-containing steel for high temperature use. NML’s technology for the production of low-carbon ferro alloys is being utilized by a number of units producing Fe-Mo, Fe-W, Fe-V, Fe-Mn and Fe-Cr alloys. NML’s technology has been used for production of battery grade manganese dioxide from Indian ores by MOIL, Nagpur. Also a 50 kg/day pilot plant has been set up in Rangoon, Myanmar, based on the technology.

NML is a pioneer in the country in producing and supplying standard reference materials for chemical analysis. Recently sample orders were executed for Germany. This is saving foreign exchange and also contributing to the domestic requirements.

NML has done considerable amount of work on metallic corrosion inhibitors. The important inhibitors developed at NML are (1) Metasave - Sulphuric acid pickling inhibitor, (2) NML-Vapour Phase Inhibitor, (3) NML Hydrochloric acid inhibitor, (4) NML-Galvasave. Some of the users are Tata Steel, TCIL Jamshedpur, and so on. M/s Metoil Corporation, Jamshedpur has been producing Metasave and recently taken the Galvasave know-how for commercialisation. A good number of coatings have been developed at NML for steel and aluminium based on co-polymer vinyls. In the area of zinc rich primers, two types of primers developed and evaluated in chemical and fertilizer industries. One is alkali silicate and the other is ethyl silicate. The alkali silicate being water based is very cheap in comparison to organic solvent based. These coatings have been evaluated by different paint manufacturers and steel furniture manufacturers. Recently M/s Tube Products of India, Madras has taken the calorising of steel technology for its commercialisation.

NML’s efforts lead to the increase in productivity of brass and bell metal castings. Coke consumption was appreciably reduced and melting losses decreased from 10% to 4% in furnace designed using waste material. Rejection rate was brought down to 6-7% from 30-35% in the commercial aluminium utensil unit. NML’s designed Mini Cupola and Equiblast Cupola are extensively used by small foundries.

Current R&D Programme

To meet the new situation arising from changes in the Centre’s policies, NML has put more emphasis on sponsored research projects. The concept of mretainership has already yielded some encouraging results. Private companies like Usha Martin and Panyam Cements have engaged NML for trouble shooting and consultancy works. Recently NML has completed the consultancy projects for a number of clients viz. M/s Dankuni Coal Complex of Coal India Ltd.; M/s SII Paloncha Kothaguda; M/s Saha Minerals Ltd., Sahibganj; M/s frimax Agencies Pvt.Ltd. Madras; M/s Tamil Nadu Newsprint Ltd, Madras; M/s Dhanbad Chemicals Pvt.Ltd; Malanjkhand Copper Project of Hindustan Copper Ltd.; M/s Hindustan Zinc Ltd, Udaipur; M/s Kudremukh Iron Ore Co.Ltd., M/s Gujarat Mineral Development Corporation; and so on.
The component Integrity Evaluation Programme (CIEP) involving an outlay of Rs 6 crores designed under thrust area projects, has evoked good response in core sectors such as energy, oil and steel. The sponsors like Indian Oil, SAIL, Bharat Petroleum, Tata Iron and Steel Co. and the Union Department of Atomic Energy have lent their support to CIEP. The world Bank has given a soft loan of Rs 3.5 crores. This study is envisaged as a thrust area project to evolve reliable methodologies for life prediction for critical engineering components with regard to their performance/failure behaviour in industries. With the completion of the project, it is expected to produce benefits in terms of (i) conservation of material through life extension by retirement of a component, (ii) conservation of energy through efficient design and assured performance of materials and components, (iii) reduction in down-time through phased replacement of worn out components during routine shut down for maintenance, and (iv) increase in reliability and safety through prevention of catastrophic failure.

Another thrust area project entitled "Processing of polymetallic sea nodules for the recovery of metallic values" has been progressing well. This involves development of a suitable process for the recovery of metallic values - particularly, copper, nickel and cobalt economically from polymetallic sea nodules through reduction roast, ammonia leaching, solvent extraction and electrowinning. The technology being developed could also be used to recover Ni and Co from the Indian land based nickel resources.

The central Pollution Board has sponsored a project to study the already alarming pollution levels in Howrah from Foundry and other engineering units in the region and to recommend measures to mitigate the problem. The laboratory has signed an MoU with M/s Usha Martin Industries Ltd., which like other agreements with RDCIS, SAIL, TATA Steel, TOIL, is expected to result in mutual benefit. NML has entered into an agreement with M/s STI Biplus Tubing (India) Ltd. to reduce rejection rate owing to poor brazing, copper flow, black spots and tarnishing in the production of copper-coated tubes, at their plant at Dewas (M.P). Similarly continuing interaction with TATA Steel has resulted in securing yet another interesting project. viz. Bench scale production of nonasized alumina.

NML's Field Stations at Batala, Howrah, Ahmedabad, Digha as well as regional complex at Madras and the regional liaison centre at Calcutta have been considerably contributing towards the solution of the local industrial problems. The NML Madras Unit has been actively engaged in column flotation studies to improve the grades of mineral concentrates. It has developed a fully automatic microprocessor - controlled pilot column.

M/s Tatanagar Bricks Ltd., Jamshedpur, which has recently floated a public issue, is based on NML's know-how for fly-ash based wear resistant ceramics. It has undergone successful trial run, and also in the process of commercial production. NML needs more of such technology transfers to establish its credentials as an economically viable research laboratory to meet the needs of the small and medium industries which are facing resource constraints to undertake their own in-house R&D programmes. Programmes like CIEP can help NML to live up to Nehru's faith in indigenous research and development capabilities.
Material Shaping

Facilities & Expertise

The Material Shaping Unit of the Materials Processing (Mt?) Division of the National Metallurgical Laboratory is mainly engaged in R & D activities leading to process & product developments as well as providing infrastructural facilities for rolling, forging, wire drawing, extrusion & heat treatment of ferrous & non-ferrous metals and alloys. The facilities existing here also include large equipment for semi-commercial/pilot scale activities. They have facilitated transfer of several technologies for industrial production.

<table>
<thead>
<tr>
<th>Major facilities</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>0' Drop Forging Hammers (0.5, 1 T)</td>
<td>Extrusion of Al & Mg base alloy</td>
</tr>
<tr>
<td>2/4 High Rolling Mill (101)</td>
<td>Production of 18/8 austenitic stainless steel sheet, wire and casting</td>
</tr>
<tr>
<td>Extrusion press (500 T)</td>
<td>Varieties of cladded materials</td>
</tr>
<tr>
<td>Hydraulic press (500 T)</td>
<td>Production of Non-ferrous alloy sheets, bar & wire</td>
</tr>
<tr>
<td>Wire drawing Bench & Drum</td>
<td>Production of varieties of contact materials & brazing alloys</td>
</tr>
<tr>
<td>Varieties of heat treatment furnaces</td>
<td></td>
</tr>
<tr>
<td>Rapid solidification for ribbons and subsequent densification</td>
<td></td>
</tr>
<tr>
<td>Powder production, Corrpaction & Sintering</td>
<td></td>
</tr>
<tr>
<td>Testing of all mechanical properties (Tensile, Impact, Fracture-Toughness & so on)</td>
<td></td>
</tr>
</tbody>
</table>

& D Programme

The Material Shaping Unit pursues relevance-oriented (Thrust Area/Sponsored/Interactive/Coliebora live) projects and excellence-oriented (Sponsored/Exploratory) research projects. Its expertise in the form of Consultancy and Technical services is made available against fees.
Know-how transferred

Cl Nickel-free electrical resistance alloy
- Ws Cable Work, Faridabad;
- M/s Heat-Well, Calcutta
- M/s J. S. Engineering, Varanasi

Dental amalaam alloy
- M/s Derail! India, Jamshedpur;
- M/s Shakti Industries, Varanasi

Magnesium-inoculant briquettes
- M/s Damani Works, Calcutta

Thermostatic 31-Metal
- Ws Cable Work, Faridabad

Know-how ready for transfer

Brazing alloys
- Ag-Cu eutectic alloy
- Ag-Cu-Zn alloy
- Cu-Ag-Si alloy, rapidly solidified foils as well conventionally cast

Heating element
- Ni-Cr alloy

Cutting tools
- High speed cast culling toots

Clad material
- Mild steel cladded with stainless steel
 - copper/tool steel
- Al-cladded with stainless steel
- Copper clad aluminium
- Al cladded Al-brazing alloy
- Ag cladded Ag-base contact alloy

Orthodontic stainless steel wire

Cl Contact Materials
- Cu-Cr alloy
- Ag-Cd0 contact by internal oxidation
- Ag-Ni & Ag-W contact by PM technique
- Cd-free Ag-base alloy
Metal Casting

Powder Production

Facilities and Expertise

Metal Casting & Powder Production represents one facet of the programmes charted by the Materials Processing Division of the National Metallurgical Laboratory, Jamshedpur. The activities here broadly encompass the following:

0 Melting and casting of ferrous & non-ferrous materials
• Testing, evaluation, and development of foundry raw materials such as sand, binders and special additives

Production of metal/alloy powders

The above activities are pursued as a part of in-house R&D projects; sponsored/collaborative/interactive/consultancy programmes; or as supporting services for other divisions of the laboratory.

Facilities

Moulding

O Sand-Bentonite system
O CO₂ Silicate system
• Resin-Catalyst system

Testing

0 Entire range of testing for moulding materials
Li Conventional thermal analysis (DSC/DTA/TG)
D Thermal properties of sand-metallic materials

Melting

a Vacuum induction Melting & Casting Unit (40 kg capacity)
0 Air Induction Melting Unit (1-15 kg capacity)
Submerged Arc Furnace (500 KVA)
Direct Arc Furnace (50 KVA, 30 Kg capacity)
Gas fired Morgan Furnace (50 kg copper capacity)
Hot Blast Cupola (1 T/hr)
Achievements

Sand/Moulding

- PLtesting a Monograph on Indian loirdry sand/ bentonite
- Development of a self-set sand based on residue from pidgeon process (for magnesium production).
- Beneficiation of local river sand for application in Cast Iron & Non-ferrous fourdri65

Powder production

- Design and installation of prototype atomisation units for ferrous and non-ferrous powders
- Process development for electrolytic iron powder from sponge fines

Societal mission

- Appropriate fuel-efficient melting furnace for rural brass & bell metal artisans
- Mini cupola for small scale sectors
- Improved material for plough shear
- Development of hot blast cupola

Alloy development

- 3 Hee resistant high aluminium cast iron (Pyriotioy 1000)

Know-how ready for transfer

- Production of quality SG/CG iron from sponge iron and other indigenous raw materials
- Heal resistant Al-bearing cast iron
- Nitraden-bearing wear resistant cast irons
- Super plastic (ferrous) material
- Life improvement of ingot moulds
- Substituted stainless steel (Fe-Mn-Al variety) for elevated temperature applications
- Low sulphur, low phosphorus pig iron from sponge fines
- SG iron by inexpensive pure magnesium treatment
- Equi-blast and hot-blast cupola
- Upgradation of lean bentonite
- Filters/Reactive filters for aluminium alloys
- Modifier for grain refinement of aluminium and its alloys
- Rheocasting technology for light non-ferrous alloys
- Rapidly solidified ferrous & non-ferrous materials
- Atomised ferrous and non-ferrous powders
- Super pure iron powder through electrolytic route from sponge fines
MATERIALS CHARACTERISATION

Characterisation of materials is related to their structural, physical, mechanical and chemical attributes. For the same chemical composition, the parameters which determine the attributes are microstructural features and flaws in the material. The techniques for materials characterisation use methodologies which are influenced by these parameters. In the recent times, emphasis has been placed to develop and use non-destructive test techniques and to improve the laboratory techniques for better materials characterisation so that the safety and reliability of a component is improved and quantitative life assessment of a component is possible. The Materials Characterisation Division of NML aims to cater to these needs.

Facilities

- Scanning Electron Microscope. JEOL JEM 840A, with EDAX facility.
- Optical (Carl Zeiss & Leitz) microscopes with image analysis facility
- Portable X-ray diffraction based residual stress measurement.
- Portable barkhausen noise analysis system for residual stress measurement and assessment of microstructures.
- Equipments for magnetic property determination.
- X-ray diffraction system for crystal structure determination and phase identification
- Ultrasonic and eddy current equipment for flaw evaluation.
- Portable metallography and hardness measurement systems.

Expertise

- Assessment of structural integrity - on-line and off-line.
- Experimental stress analysis.
- Failure analysis.
- Structure property relationship.
- Non-Destructive Testing for flaw detection/assessment.
- Non-Destructive Testing for the assessment of microstructures and damages due to mechanical deformations.
- Soft and hard ferrites.
- High strength soft magnetic materials.
- Alnico magnets.
- Insitu microscopy
- High Strength ceramic magnet.
ON
TAILORING OF PROPERTIES THROUGH MECHANICAL
FROCESSEC -- A PRAUTICAL APPROACH (PROMPT-94)

COTVEITTEE STRUCTURE

Organising Committee

Prof. P. Ramachandra Rao, Director, NML c. Chairman
Dr. C.S. Sivaramakrishnan .. Coordinator
Mr. Sukomal Ghosh .. Member
Dr. V. Rao .. Member
Mr. B.N. Ghosh .. Member
Mr. S.K. Choudhury .. Member
Mr. Kishori Lal .. Member
Mr. N.K. Das .. Member
Mr. S.P. Chakraborty .. Member
Dr. N.G. Goswami .. Member

Technical Coaaittee

Mr. B.N. Ghosh .. Chairman
Mr. S.P. Chakraborty .. Member
Dr. V. Rao .. Member
Mr. S.K. Choudhury .. Member

Finance Committee

Mr. N.K. Das .. Chairman
Dr. A.K. Ray .. Member
Mr. Kishori Lal .. Member

Hospitality/Registration/Accommodation Committee

Mr. Sukomal Ghosh .. Chairman
Mr. P.K. De .. Member
Dr. G. Mishra .. Member
Mr. R.G. Ganguly .. Member
Mr. M.L. Blaggan .. Member

Secretarial Assistance

Mr. P.N. Swamy
Mr. K. Narayanan
Faculty

Banerjee, Mr. P.K
Chief Quality Manager
Tinplate Company of India Ltd
Golmuri, Jamshedpur 831003

Biswa, Dr. P.K
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Das, Mr. N.K
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Dev, Mr. S.O
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Ghosh, Mr. B.N
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Kutumbarao, Dr. V.V
Professor
Head (Dept. of Met. Engineering)
Institute of Technology
Banaras Hindu University
Varanasi 221005

Lal, Mr. K
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Lunawat, Mr. C.B
Divisional Manager
Quality Assurance
Tube Division
Tata Iron & Steel Company Ltd
Jamshedpur 831007
Mitra, Mr. N
Director
Bureau of Indian Standards
Namdih Road
Jamshedpur 831007

Pandit, Mr. S
Deputy General Manager
Technical Services
Foundry Forge Plant
Heavy Engineering Corporation Ltd
Ranchi 834004

Rao, Dr. V
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

Sharma, Mr. S.R
Divisional Manager (Design & Dev.)
Forge Division
Tata Engineering & Locomotive Co.Ltd
Jamshedpur 831010

Singh, Dr. M.P
Professor
Metallurgical Engineering Dept.
Regional Institute of Technology
Adityapur, Jamshedpur 831013

Singhal, Mr. O
Divisional Manager
Roll Technology Services
Tata Iron & Steel Company Ltd
Jamshedpur 831001

Todi, Mr. V.N
The Division
Tata Iron & Steel Company Ltd
Jamshedpur 831007

Viswanathan, Dr. M
Chief Technical Manager
Indian Copper Development Centre
27-B, Camac Street
Calcutta 700016
LIST of PARTICIPANTS

1. Bandopadhyay, AF/Extrusion (P.NO.837144)
 Ministry of Defence
 Ordnance Factory
 Ambajhari
 Nagpur 440021

2. Bandopadhyay, Mr.P.S
 Works Manager
 Ordnance Factory
 Ambarnath 421502

3. Banerjee, Mr.S
 Senior Engineer (R&D)
 Tinplate Company of India Ltd
 Golmuri
 Jamshedpur 831003

4. Basu, Ms.Sarbari
 Metallurgist (R&D)
 Indian Aluminium Company Ltd
 39, Grand Trunk Road
 Belurmath
 Howrah 711202

5. Bhattacharya, Mr.P.K
 Technical Adviser (W.M)
 Indian Steel & Wire Products Ltd
 Indranagar
 Jamshedpur 831008

6. Bhide, Mr.Rajeth A
 Assistant Works Manager
 Ordnance Factory
 Ambarnath 421502
7. Chandran, Mr. Ravi
Deputy Manager (R&D)
Tata Iron & Steel Co.Ltd
Jamshedpur 831001

8. Choubey, Mr. S.M
Manager
Bharat Aluminium Company Ltd
P.O: BALCO Township
Korba 495684

9. Choudhury, Mr. S.P
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

10. Das, Mr. L.K
Engineer
India Government Mint
Alipore 700053

11. Das, Mr. Shantanu
Quality Assurance
Usha Martin Industries Ltd
Jamshedpur 831001

12. Dey, Mr. N.K
Assistant Works Manager
India Government Mint
Alipore 700053

13. Goswami, Mr. S.B
AF/IMS (P.No.887158)
Ministry of Defence
Ordnance Factory
Ambajhari
Nagpur 440021

14. Hajela, Mr. P
Manager
Bharat Aluminium Company Ltd
P.O: BALCO Township
Korba 495684

15. Haider, Mr. S.H
Deputy Manager (Metallurgy)
Bokaro Steel Plant
Steel Authority of India Ltd
Bokaro Steel City
Bokaro
16. **Kambli, Mr. R.S**
Works Manager
Ordnance Factory
Ambarnath 421502

17. **Kunar, Mr. A**
Deputy Manager (Technical Services)
Heavy Engineering Corporation
Ranchi 834004

18. **Lunawat, Mr. C.B**
Divisional Manager (QA)
TUBes Division
Tata Iron & Steel Company Ltd
Jamshedpur 831007

19. **Mahajan, Mr. R-C**
General Manager (Works)
Indian Steel & Wire Products Ltd
Indranagar
Jamshedpur 831008

20. **Mahanti, Mr. R.K**
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

21. **Mhhotra, Mr. A.K**
Deputy General Manager
Rourkela Steel Plant
Steel Authority of India Ltd
Rourkela 769011

22. **Mishra, Mr. A.K**
Senior Engineer (QA)
Tinplate Company of India Ltd
Golmuri
Jamshedpur 831003

23. **Mishra, Mr. Sandeep**
SSS Industries
Adityapur
Jamshedpur 831013

24. **Parida, Dr. N**
Scientist
National Metallurgical Laboratory
Jamshedpur 831007
25. Rao, Mr. P.R.G
Divisional Manager (Plant Engineering)
Ribes Division
Tata Iron & Steel Co.Ltd
Jamshedpur 831007

26. Roy, Mr. Soumitra
Metallurgist (R&D)
Indian Aluminium Company Ltd
39, Grand Trunk Road
Belurmath
Howrah 711202

27. Sharma, Mr. M.K
Deputy Manager
Heavy Engineering Corporation
RanChi 834004

28. Singh, Mr. Charanjit
WRM Production
Usha Martin Industries Ltd
Jamshedpur 831001

29. Sinha, Mr. R.K
Scientist
National Metallurgical Laboratory
Jamshedpur 831007

30. Sisodia, Mr. S
Manager (Metallurgical Services)
Salem Steel Plant
Steel Authority of India Ltd
Salem 636013

31. Tiwary, Mr. S.K
Assistant Manager (R&D)
Tata Iron & Steel Co.Ltd
Jamshedpur 831001

32. Vasudevan, Mr. S
Senior Manager (Project)
Salem Steel Plant
Steel Authority of India Ltd
Salem 636013
WORKSHOP ON TAILORING OF PROPERTIES THROUGH MECHANICAL PROCESSING -- A PRACTICAL APPROACH

September 23-24, 1994

List of Papers

"Evaluation of Hot Workability through Processing Maps"
(V.V.Kutumba Rao)

"Quality Aspects of Special Forgings of Low Alloy Steels"
(S.Pandit)

"Tailoring of Properties through Squeeze Casting Technique"
(P.K.Biswas)

Forging Technology -- As Applied to Automobile Industry"
(S.R.Sharma)

"Wire Drawing -- Influence of Manufacturing Practice on Wire Quality and Properties"
(M.Viswanathan)

"Roll Qualities and Economic Utilization of Rolls"
(Umesh Singhal)

"Roll Cladding and Property Developments"
(S.C.Dev and B.N.Ghosh)

"Mechanical Processing in Magnetic Materials"
(V.Rao)

"An Overview of Manufacturing Methods of Tin Mill Black Plate (TMBP) and its Quality Requirements"
(P.K.Banerjee)

"Technology of Steel Tube Making"
(V.N.Todi and C.B.Lunawat)

"Role of Indian Standards in Tailoring the Properties of Wrought Steels"
(N.Mitra)

"Processing of Non-ferrous Alloys through Extrusion"
(K.Lal and S.C.Dev)

"Thermo-mechanical Processing for Tailoring Properties in Steels"
(B.N.Ghosh and N.K.Das)

"Superplastic Forming of Metals"
(M.P.Singh)
EVALUATION OF HOT WORKABILIT Y THROUGH PROCESSING MAPS

V.V. Kutumba Rao
Professor & Head
Department of Metallurgical Engineering
Banaras Hindu University
Varanasi 221005