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ABSTRACT

A numerical technique, which includes a nonorthogonal coordinate transformation, a control volume ba,sed discretisation
scheme and a method of search for determining the location of solid-liquid interface is developed for solving the thermal field
during solidification process by continuous casting operation. The formulation is applied to continuous casting process of
AI-Mgalloy cylindrical ingot. The theoretical prediction of the interface is ingood agreement with the eJ,:perimentallymeasured
interface.

NOMENCLATURE 1. INTRODUCTION

Mould height

Height of the solidified shell (Fig.l)

Unit vector in the x-direction

Heat transfer coefficients

Transformed radial coordinate

Transformed axial coordinate

Unit normal vector

Vector differential operator

Interface position

Latent heat

Differential increment

Indices: I for liquid; s for solid
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Specific heat

Thermal conductivity

Temperature

Density

Casting speed

Axial coordinate

Radial coordinate

Velocity of the interface

Radius of the ingot
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After oxygen steel making, continuous casting IS un­

doubtedly the most important technological advance in

the metallurgical frontier during the post war period. It

is used for metallurgical processing of materials and

crystal growth. The importance of solidification process

in metallurgical operations need not be overem­

phasized, as the metallurgical structure, distribution of

inclusions, micro-and macro-segregation as well as

metallurgical properties of the cast products are in­

timately associated with the solidification phenomena.

Surface defects, gas blow holes and pin holes, shrinkage

cracks, cavities and porosities are some of the typical

defects generally associated with the process of

solidification of metals and alloys. The heat transfer

during solidification in a continuous casting process

strongly influences product quality and process produc­

tivity. Therefore, theoretical prediction of the solidifica­

tion front and the temperature field in ingots is of

practical importance. A typical continuous casting

process is shown in Fig. 1. The liquid metal with super­

heat is po~red into the mould that has an internal pas­
sage through which the primary cooling water is

circulated. The primary cooling water is jetted out of

the bottom of the mould to impinge directly on the
casting surface. Because of this heat removal from the



TRANS. INDIAN INST. MET., YOL.47, NO.1, FEBRUARY 1994

Fig. 1 : Continuous casting process.

molten metal, a solidified shell is formed. The shell must

be sufficiently thick to contain the remaining liquid and

permit continuous withdrawal of the casting.

(a) The single region method, which applies the energy

equation over the complete domain covering both

of the phases. The latent heat release is simulated
either by appropriate modification of specific heat

or a scheme temperature rise.

(b) The multiple region method, which applies the

governing equations separately for each phase and
specifies the proper coupling boundary conditions

between the phases. Since the position of the inter­
face is a priori unknown and must be determined
as part of the solution, this thermal problem can

also be designated as free boundary problem.

region ~trategy, a conformal transformation of the solu­
tion domain was attempted to overcome the difficulties

resulting from numerical analysis2-4. However, the con­

formal transformation is only applicable to the free

boundary problems of two dimensions. Among the

notable contributors in the field, Murray and Landis1

used a variable space grid finite difference scheme for

solving the moving boundary problems solidification.

Gupta5 used a Taylor expansion both in space and time

to obtain functions values in successive time steps at

points on grid system which moves bodily with the

moving boundary. Miller et. al6 studied the said Crank­

Gupta oxygen consumption problem using finite ele­

ments in an adaptive mesh. Bo'nnerot and J amet 7,8 used

a variable space grid similar to that of Murray and

Landis to construct isoparametric finite elements in

space and time for non-rectangular grid. They have

extended their method to two space dimensions. In one

space dimension, various authors9,10 have fixed the

moving boundaries for all times by coordinate transfor­
mations. Such coordinate transformations bear the

general idea of transforming a curved shaped region in

.two or more dimensions into a fixed rectangular domain.

However for typical applications, the mapping functions

are different depending upon the geometry and physics

of the problem. The new curvilinear coordinates are

referred to as bodyfitted coordinates. Following a

pioneering paper by Winslowll,successive authors have

proposed various ways of using curvilinear grid. Useful

lists of references are given by Thompson et al12 and by

Furzeland13. Oberkampf14 discusses some useful

generalized mapping function. Furzeland13 has solved

the problem of Bonnerot and J am,et using curvilinear

transfo'r'mations and compared his results with those

obtained by other authors. Alternative mappings result

from the use of finite elements and bivariate blending

functions 15 or isoparametric curvilinear coordinates 16.
Saitoh17 uses a version of the work of Duda ct a118.

Subsequently, Sparrow et al19 have applied the same

method in each phase of melting, initially subcooled

region around a circular cylinder. Fundamental aspects

of free and moving boundary problem have been

elaborately described by Crank20 in his excellent text.

A method for handling multiple moving boundaries (in

one and two dimensions) has been described in a recent

paper by Kim and Kariany21. However, literature on

_ Primary
Cooling water

Withdrawal ram

Liquid Metal

Mould ---

During continuous casting process, the temperature dis­

tribution of ingots is independent of time, and only

dependent of spatial coordinates. This amounts to a

steady state thermal problem. An examination of the
available literature indicates that the numerical techni­

ques for solving the temperature field during solidifica­

tion process can be classified into two distinct

categories:

In general, multiple region approach offers more ac­

curate results that the single region approach 1. Further­

more, it is more attractive because the multiple region

method can be used to predict the effects of fluid flow
in the melt or external factors such as rotations and

electromagnetic stirring on solidification process. Prac­

tically, it is impossible for the single region method to

attain these relatively co~plicated aims. Among the
available literature for solving the temperature field

problem during continuous casting by means of multiple
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non orthogonal transformations applied to continuous
casting process of metals and alloys is rather scanty.

solid-liquid interface is in good agreement with the ex­
perimentally measured interface.

2. MATHEMATICAL FORMULATION

where, the subscripts I, s denote the liquidus and the
solidus phase respectively. Boundary conditions at the
solid-liquid interface are:

In modelling the heat transfer process in continuous
casting shown in Fig. 1, for pure metals or short freezing
range alloys, latent heat is considered to release along
the solid-liquid interface; therefore, the present thermal
problem is called the free boundary problem of two
phases and two dimensions. Because of axial symmetry,
the present problem becomes a two-dimensional one,

which is applicable for all practical purposes. In addi­
tion, axial heat conduction is included in the analysis;
liquid is assumed to move in slug flow and thermophysi­
cal properties of solid are different from those of liquid.
The development of mathematical model for the con­
tinuous casting process can be depicted in the following
manner. The governing transfer equations are (Fig.2),

(2)

(3)

(1)

(4)

L

L1

T

aTs all ~ '"
-K -+K-=p tlH(v. Il)

S all [ Oil S

Solid

r

aT[
V . (K[ V T[) = C[p[ U a;

aTs
V (k V T ) = C p U a-s s s s !X

x

T=T=T
[ S In

Fig. 2 : Solidification process model.

The objective of the present paper is to develop a
numerical technique to effectively solve the thermal field
problem of solidification in continuous casting in an
efficient manner in two dimensions which can be ex­

tended to arbitrary dimensions. Consequently, as an
application example of the present method, continuous
casting of an AI-Mg alloy cylindrical ingot is considered
in this study. Major emphasis has been given to the
formalism of development of a numerical technique
induding a nonorthogonal coordinate transformation,
a control volume based descretization scheme and a

searching method for determining the interface position
for studying the heat transfer phenomena during COI,­

tinuous casting. In the present study, a nonorthogonal
transformation of an irregular region in physical space
into a fixed rectangular region in computational space,
which is applicable to free boundary problems of two
and higher dimensions is employed to alleviate the dif­
ficulties arising from a priori unknown location of the
solid-liquid interface. Then a control volume based dis­
cretization scheme is adopted to ensure energy conser­
vation. Considerable amount of literature is available on

the control volume based discretisation strategy for solv­

ing problems in heat, mass and momentum transfer22-27.

This technique has been extensively used for the com­
putation of flow, temperature and concentration fields
in diverse industrial and physico-chemical processes. In
many of the cases, orthogonal control volumes have been
used for the discretisation of the governing transport
equations. The basic concepts and methodology of con­
trol volume based discretisation has been described in

the text of Patankar28. When the governing partial dif­
ferential equations are integrated over discrete nonor­
thogonal control volumes, all terms arising from
nonorthogonality of the grid are retained. In addition,
since the location of the solid-liquid interface is a priori
unknown, the problem is solved in an iterative fashion.
In order to ensure that the iteration converges, a sear­

ching method similar to optimal algorithm has been
developed for the determination of the interface. Finally,
the thermal field of an AI-Mg alloy cylindrical ingot
during continuous casting process has been obtained,
and it is observed that the numerical prediction of the

S9
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where, T is the temperature of melting point, /)J/ ism A
latent heat, n is the unit normal vector from the melt

at the interface, it is the velocity of the interface
-+ A
V = i U.

respond to a coordinate surface under the framework

of conventional cylindrical coordinate system.

3. COORDINATE TRANSFORMATION

where, T is the casting temperature, R is the radius ofo 0

the ingot.

At x = 0 and 0 :S r :s R , T = To 0 (5)
The following nonorthogonal coordinate transformation

has been employed in the present analysis. The salient
features of the transformations are as follows.

In the melt; 0 :5 ~ :S 1, 0:5 'fJ :5 1/2

where, L] is the mould height an? Tfl is the temperature
of the primary cooling water, It] IS the effective heat
transfer coefficient between surface of the ingot and

primary cooling water.

where, Tf2 is the average temperature of secondary cool­
ing water, 1t2 is the effective heat transfer coefficient
between surf~ce of ingot and secondary cooling water,

which may be obtained from the equation of Rohsenow

for nucleate boiling region with forced convection32 and

from the free falling turbulent film of water for forced

convection region33•

In computational space shQwn in Figs. 3( a) and 3(b) the

solid-liquid interface is defined by the coordinate sur­

face 'fJ = 1/2 and is fixed during iteration process of

determining the interface position. This is highly

desirable because it can both deaJ with curved irregular

interface very weJl, and avoid the regeneration of mesh

during iteration process. Consequently, the non or­

thogonal coordinate transformation can overcome the

fundamental difficulties from the a priori unknown loca­

tion of the solid-liquid interface, such that the com­

plexity of numerical analysis and algorithm development

can be greatly reduced.

At r = Ro and 0 :s x :s L]

aT
-K-=h(T-T)s ar ] f1

At r = Ro andL] :sx:S L,

aT
-K - = It (T - T )s ar 2 f2

(6)

(7)

x

where ~ = r/Ro' 'fJ = 2O(r)

In the solid phase, 0 :S ~ :S 1, 1. :S 'fJ :S 12

~ = r/R, 'fJ = 1 _ L - x

(9)

At x = Land 0 :S r :S R , if L is long enough, theo
bottom of the ingot can be assumed to be adiabatic;

however, this will increase the computational load. If L
is not long enough, an initial guess of temperature at

the bottom of the ingot needs to be made, then these

temperatures are adjusted to ensure that there are no

discontinuities in the calculated thermal gradients near

the bottom of ingot. An initial guess of the temperature

is made in the present case.

aT
At r = 0 and, 0 :S x:S L, - = 0

ar
(8)

y=o

x = 0

The numerical solution procedure of the above coupled

set of equations is complicated by the fact that the

interface surface is a priori unknown and does not cor-

60
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Fig. 3(a): Solution domain in physical space.
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,=0

. Liquid

-rL -- Y2-

Solid

.: = 1

4. CONTROL VOLUME DISCRETIZA­
TION FORMALISM

The most attractive feature of control volume based

discretization scheme is that the resulting solution would

imply that the integral conservation of quantities such

as mass, momentum and enerf,'Y is exactly satisfied over

any group of control volumes and, of course, over the

whole calculation domain. Furthermore, this charac­

teristic also exists even if the mesh size is large28,29. In

order to obtain the discretized energy equations, the
continuum calculation domain is first divided into dis­

cretized nonorthogonal control volumes. For a nonor­

thogonal control volume shown in Fig. 4, the
infinitesimal element volume within control volume and

infinitesimal element areas at control volume faces are

Fig. 3(b) : Solution. domain in computational space.

Using the chain rule of differentiation of a function,

following relations are derived which will be of sub­

sequent use. In melt,

a 1 a

ax - 20 ary

a Ii) TJdoa

ar = R ~ - R 0 d~ aTJo 0

and the vector differential operator is given as

(10.1)

(10.2)

(10.3)

(1. PI a) A (, .) ~
'\7 = R 0 a~ - a ary r + 20 ary I

h R .!L do A d <,.... d' I
were, fJ: = R d~' r an I are umt vectors III ra lao

and axial directions respectively. In solid,

jj
Fig. 4 : Non-orthogonal control volume.

as follows:

In melt,

a 1 a

ax - 2(L - 0) aTJ

a 1 i) (l-ry) do a
ar = R ~ - R (L - 0) d~ allo 0

(11.1)

(11.2)

?
dV = 4:n:W ~od~ dllo

. dS] = dSJ = 4;:n:R}o dry

dS = dS = 2;orR2 ~ (1 + 4(32) 1/2 d~2 4 0 /

(12.1)

(12.2)

(12.3 )

1- ry do
where, f3s = --p:- d~o

'\7=

( 1 a P, a )
Ro ~ - (L - 0) all

A
r+

( 1 ) a A2(L - 0) all i

(11.3)

In solid,

dV = 4:n:R2 ~ (L - 0) d~ dryo

?
dS] = dSJ = 4:n:R~ ~ (L - 0) dry

? ? II?
dS = dS = 2lrR- e (l + 4N-) - de:1 .J () S 1-'.\" ':0

6]

(13.1)

(13.2)

(13.3 )
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The outward unit normal vectors at control volume faces

are;

At faces 5] ,
"'- V ~ "'-
/1] = TVn = r

(14.1)

At face S2' in melt,
On substitution of eqns. (10), and (14) into (16), the
expression becomes,

(14.2)

and in solid,

1 A

2. i - f3s ;:

(1 )1/2
- + 1324 s

at face 53' 113 = - r

at face S4' in melt

(14.3)

(14.4)
_ (1+420T, 131 aT,) 2fK, 40 13, Oil - Ra ar 4][ Ra ~ d~

4
(17)

aT[ aTI

- [ K[f3(ali Ra ~ d1] + [ K[f3(a[ Ro ~ d~
3 2

aT aT

fe p U-[dV= 2JrR2 e p uf-' ~d~ d1] (18)"ax all a
v ~~

On substitution eqns (17) and (18) into eqn (15), the

following thermal transport (energy) equation in dif­
ferential-integral form in (~ - 1]) coordinate system is
derived.

The right hand side of eqn. (15) can be expressed as,

(15)

(14.6)

(14.5)

with application of Gauss theorem, the left hand side of

eqn. (15) becomes,

and in solid,

The, thermal transport (energy) equations are in­
tegrated over each nonorthogonal control volume in
physical space. For melt region, the expression will be:
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It may be observed that the first four terms in the right
hand side of the above equation result from the nonor­
thogonality of grids. The equation in its differential-in­
tegral form has been discretized in the computational
space of which the grids are straight orthogonal (Fig. 5).
Certain rules are observed while discretizing eqn. (19)

o S ~ S 1, 1/2 S 'Yj S 1

the source term 5 in eqn. (20) and the current valuesc

are adopted in the computation process. In addition,
the coefficients a in eqn. (20) must be positive so as top

assure that iteration process converges. The upwind
scheme has been introduced in discretization of the

iJT . aT~) - Tw ...
iJrJ _ofvolume mtegral dYJ = _ .. LIkeWise,the dls-

rJp YJw

cretized energy equation in solid phase can be derived
in (~ - YJ) coordinate system,

along with the associated boundary conditions.

(19)

5. SOLUTION PROCEDURE

w.

Sw·

P •

S.

.3i+1
• E

3i• SE

The free boundary problem of temperature field during
continuous casting has to be solved in an iterative

fashion. The general iterative solution procedure will be
as follows.

(i) A solid-liquid interface position o(r) is assumed.

(ii) Solution is sought for the discretized energy equa­
tion in the melt and solid region respectively with a
line by line iterative scheme.

(iii) An improved interface position isobtained by satis­
fying the energy balance equation at solid-liquid
interface with the temperature gradient from step
(ii)

Fig.5: Computational space with orthogonal grids.

i.e, the integrated function of each surface integral term
is replaced with the function value at a node point P

within the control volume. Consequently, following dis­
cretized energy equation in the melt has been obtained.

(iv) Iterative sequence from step (ii) is repeated until
convergence has been achieved.

The energy balance equation at the solid-liquid interface
in (~ - 'Yj) coordinate system has been given as:

The discretized form of eqn. (22) isa set of nonlinear

algebraic equations. Though, a set of nonlinear algebraic
equations can be solved by some iteration scheme, it is
only when initially guessed values approach it's solution

o ~ ~ s 1, 0 S rJ S 1/2

ap Tp = aNTN + asTs + aETE + awT w + Sc (20)

It should be stated that in order to make the discretized

equation be in the form of eqn. (20), which is easy to
solve, all the terms related with the values of temperature

at node points NJV' NE, SJV' SE' which emerges from

the non orthogonality of the grid, are incorporated into

=ptiliU (22)
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closely. Otherwise, the iteration process would diverge
or converge to a physically unrealistic result. Therefore,

in this pres~nt work, a searching method similar to op­
timal algorithm has been developed for determining
improved interface position.

During searching process, the location of solid-liquid
interface is moved. If heat loss from the interface at

node i is greater than the sum of heat input to the
interface at node i plus the latent heat released here,
the interface at·node i needs to be moved a distance in

positive x- direction. Once, the energy balance require­
ment is satisfied, the interface will be stationary. At the
same time, the searching iteration procedure may also

be regarded as pseudo-transient, where the interface at
node i moves with a velocity W. in x- direction and itsI

one iteration is equivalent to a time interval, the pseudo
transient process elapses. Therefore, the expression for
interface location of the k-th iteration can be repre­
sented as,

be modelled as zero freezing range alloy with melting

point of 923 K and the latent heat is released along the
interface. Therefore, this steady state thermal field prob­
lem. A computational algorithm has been devised to
solve the problem in the light of the numerical method.

The thermal p~ofile in the melt and the solid, and the
location of solid-liquid interface have been obtained.
Computational result shows that the theoretical predic­
tion of the interface is in good agreement with the ex­
perimentally measured interface as reported by
Weckman and Niessen30. Figure 6 shows the com­
parison of these profiles. This is an indication of the
prediction credibility of the numerical formalism. Fig­
ure 7 shows some computed isotherms during con­
tinuous casting process. Some important parameters
such as casting speed, secondary cooling conditions will

influence the interface shaP9 and further influence
quality of the ingot and its productivity.

Ok = ok - 1 + w.~tI I I (23)

w. = U 0.0
I

1dd 2 [K'("TI ) K. ( 'T. ][1+ Rod;) 20i 7iii1J=i-2(L-Oi) 7iii 1J=i
pM

(24)

When all Wi - 0, the interface would attain its steady

state position and the energy balance requirement will
be satisfied.

6. APPLICATION EXAMPLE

liquid

solid

7.62cm

In order to verify the application of the formalism, con­
tinuous casting of a 0.1524 m diameter A6063 AI-Mg

alloy cylindrical ingot30 has been taken as an example
for simulation. The casting speed is 3.80 x 10-3 m.s-1

and the pouring temperature of the metal is 963 K. In
addition, the initial cooling ,water temperature of the
liquid metal is constant at 280 K, the flow rate is 1.89 x
10-3 m3.s-1 and the average temperature of the secon­

dary cooling water is303 K. The freezing range of A6063
AI-Mg alloy is narrow enough that it can be modelled
as zero freezing range alloy is narrow enough that it can
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experimentally
measured interface

calculated interface

Fig. 6 : Solidification profile of the ingot.
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I .

Fig. 7: ThermaJ"profile distribution.

7. CONCLUSION

The essence of the present study is the development of

a numerical formalism which comprises of a nonor­

thogonal coordinate transformation, a control volume

based discretization procedure and a searching method

for the determination of the location of the solid-liquid

interface for solving temperature field during solidifica­

tion in continuous casting. The formalism can deal with

the irregular shape of the interface well, avoid the

generatiop of mesh during iteration and ensure the itera­

tion to converge. In addition, all the terms arising from

the nonorthogonality of the grid are retained in the

solution procedure. It is expected that the numerical

formalism can be utilized to solve the free boundary of
three dimension and with further modification, it can
take into account the effects of fluid flow in the melt

and external factors which as rotation and electromag­

netic stirring on solidification process. As a verification

application, theoretical simulation of continuous casting

of AI-Mg alloy cylindrical ingot has been carried out
with axial heat conduction. The predicted profile has

been compared with the experimental data (lnd found

to be in good agreement. A comparison of the present

work with the recent work of Kim and Kaviany21 can

also be described in few lines. They have developed a
finite difference based method on coordinate transfor-
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mation to tackle phase change problems with movinb
boundaries of irregular shape. The discrctised conser­

vation equations arc associated with moving control

volumes which undergoes stretching/contraction in the

physical coordinates. The moving boundaries arc

treated eXplicitly to avoid iterations, while the tcmpera­

ture field equations arc treated implicitly. Thc method

is not applicable for problcms whcre latent heat is

released over a range of temperature. In the present

work a searching techniquc has bccn dcveloped for

iterative convergence of thc solution algorithm to a

physically realistic result. At the same time the searching
iteration procedure may be regarded as pseudo-tran­
sient, where the interface moves in the axial direction

and it's one iteration is equivalent to a time interval the

pseudo-transient process elapses. The location of the
interface is computed in an efficient manner at every
iteration.

Basing upon the theoretical simulation of the tcmpera­

ture field during solidification in continuous casting, it

is possible to predict the effects of some technological

parameters on the solidification and crystal growth by

a heat transfer analysis which can be the scope of future
work.
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