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Shift in Metallurgical Solidification Modelling
s. K. Das and K. M. Godiwalla*

This paper provides a fundamental overview of the phase field

theory addressing some of the basic concepts. modelling formalism and

application of phase field approach in metallurgical solidification analysis.
The main advantage of the phase field method is that the location of the

solid-liquid interface is given implicitly by the phase field, which greatly

simplifies the handling of merging interfaces. The phase field methods

have become increasingly popular in numerical simulation over the past

ten years. Using a phase-field variable and a corresponding governing

equation to describe the state (solid or liquid) in a material as a function

of position and time. the diffusion equations for heat and s01ute can be

solved without tracking the liquid-solid interface. The interfacial regions

between liquid and solid involve smooth but highly localised variations

of the phase-field variable. It is indeed a paradigm shift in metallurgical

solidification analysis and modelling. The technique has been applied a

wide variety of problems by various researchers including dendritic

growth in pure materials: dendritic, eutectic, and peritectic growth in

alloys: and solute trapping, rapid solidification and continuous casting

operation.

Introduction

In classical approach of metallurgical casting and

solidification modelling and analysis, there is typically a

solid phase and a liquid phase, separated by a thin
solidification front. This interface has associated with it,

for example, surface energy, and is the location of latent

heat release during solidification. Solutions to such

models in conjunction with experimental results provide

a wealth of insight into the understanding of physical
phenomena. However, since the interface position must

be determined as part of the solution, often only

solutions with very special interface shapes (e.g. planar,

spherical, nearly planar, or nearly spherical) can be

obtained. Solutions become exceedingly difficult to obtain

as the interface morphology becomes more complicated.

The phase-field method 1, provides a powerful

theoretical description to free-boundary problems for

phase transitions during solidification. In a free­
boundary formulation, the interface is assumed to be

represented as a surface and it is endowed with boundary
conditions that represent the physical proceases at the

interface. In contrast, the phase-field method assumes
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the interface has a finite, but small, thickness, In

addition, it postulates the existence of a function, called

the phase-field, whose value identifies the phase at a

particular point in space and time. The phase-field model

is based on a square gradient entropy functional, which

can be used to derive the socalled phase-field equations,

which are a coupled pair of parabolic non-linear partial

differential equations. An advantage of this approach is

that the position of the interface is represented by the
level sets of the phase-field and that it treats the bulk
phases and interface in a uniform manner.

Phase-field models use a different approach in which

a sharp interface is replaced by continuous variations

which are measured by a new variable, the phase-field.

This variable is governed by a partial differential equation

over the entire domain and is coupled to other variables

such as temperature or concentration. The position of
the interface is determined by the value of the phase­
field variable - the interface location does not need to

be tracked explicitly. Consequently, phase-field models

are easier to implement computationally than sharp­
interface models, especia'lly when complex interface

morphologies are present. Phase-field methodologies for

the solidification of single-phase solids for single

component or pure materials were developed during
1980's. In these models, the phase-field variable is
introduced in order to differentiate in a continuous

fashion between the liquid and solid-phases in the
system. In its simplest form, these models include a

thermodynamic description of the free energy of the

system as a function of the temperature and the phase­
field. Phase-field models for the solidification of two­

component systems having simple phase diagrams were

developed in the last several years by researchers in

various institutions. These models feature a free energy
that depends on the solute concentration in addition to

the temperature and the phase-field; the free energy is

constructed in such a way that the appropriate phase

diagrams for the system are recovered. The most general

model includes a formulation for the free energy of the
system in terms of the temperature and concentration

of the system, together with two order parameters rather
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Fig. 1 : Schematic representation of a possible physical inter­

pretation of the phase-field variable. [Adapted from ref. J).

To reduce the full description to a single phase-field

variable, two simplifying assumptions are necessary. The

first assumes that the amplitudes associated with the

inter-atomic spacings (shortest reciprocal lattice vectors)

respond to interface motion most slowly; i.e., their

adjustment limits the rate of crystal growth. Amplitudes

associated with shorter wavelengths, it is argued,

respond more quickly. Then the description of the liquid­

to-crystal transition can be reduced to a small number

of amplitudes that simply describe the probability of the
occupancy at the lattice positions in the three­

dimensional unit cell. The second simplification comes

if one assumes that the amplitudes of this limited set of

Fourier components are proportional to each other. Then

numerical algorithms in the last twenty years. A single,

scalar order parameter can be used to model

solidification of a single-phase material. However, to

employ such a simple description of the liquid-solid

transition necessarily requires a number of

approximations. Figure 1 shows one possible physical

interpretation of a single scalar phase-field variable. The

interfacial region and its motion during solidification are
depicted by a damped wave that represents the

probability of finding an atom at a particular location.

On the left [Fig. 1), the atoms tend to be located at

discrete atomic planes corresponding to the crystal. As
the liquid is approached, the probability has the same

average value but becomes less localised, as indicated

by the reduced amplitude of the wave. Finally the
probability achieves a constant value in the liquid

indicating the absence of localisation of atoms to specific

sites: i.e., a liquid. The amplitude of the wave might be
related to the phase field.
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than a single one. One of the order parameters, is used

to indicate whether the system is in a solid or liquid

phase, and the other order parameter, is used to indicate
which of the two possible solid phases is present.

Phase-field modelsl-4 can be divided into various

intersecting classes; those that involve a single scalar

order parameter and those that involve multiple order

parameters; those derived from a thermodynamic

formulation and those that derive from geometrical

arguments. There are also formulations best suited for

large deviations from local equilibrium and others for

the opposite. There are physical problems where the

order parameter can easily be associated with a

measurable quantity such as a long-range chemical order

parameter in solids and those where the order parameter

is not easily measurable such as in solidification. In some

cases, the method might represent real physics and in

others, the method might be better viewed as a

computational technique. Indeed, neither phase-field

models nor sharp-interface models perfectly represent

physical systems. In addition. phase-field models for
solidification coupled to fluid flow are also being

developed. This research should have a major impact

on our understanding of flow in the mushy zone caused

by shrinkage and buoyancy-driven convection.

Phase-field methods have their roots in diffuse

interface theories of phase transitions developed at the

beginning of the nineteenth century to model critical

phenomena in fluids. The phase-field model of a solid­

liquid phase transition. It is only in the last decade that

they have come to the fore an alternative description of

free-boundary problems, largely because computer power

has only recently reached a level where phase-field

methods provide a feasible method of computing realistic

growth structures, such as dendrites.

The Phase-Field Approach

The classical mathematical description 1.4.6 of the

.solidification process has the form of a Stefali's problem,
in which two diffusion equations govern the transport of

heat in the solid and liquid phases, coupled by boundary

conditions prescribed at the solid-liquid interface. Since

the shape is changing in time it is a free boundary

problem for which it has proved very difficult to find

analytic solutions of practical use. For this reason a
considerable effort has been put into developing
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a single scalar can describe the ai:1plitude as they vary

across the interface, as in Figure 1. Such a description

is most appropriate for metallic systems.

This second assumption eliminates the possibility

of describing anisotropy in a physical way. Interface

energies are rendered isotropic. For single-var-iable
phase-field models, anisotropy must be introduced ad

hoc through an orientation dependence of the gradient

energy coefficients. as shown below. Alternatively, one

can keep the multiple-order parameter picture and

naturally derive anisotropylO. If one accepts that a singIe­

order parameter can represent the transformation from

liquid to a specified solid phase, then multiple scalar

phase-field variables can be used to treat situations
where more than two solid phases appear, e.g., eutectic

and peritectic reactions. Multiple phase-field variables

can also be used to treat the multifle orientations found
in a polycrystalline material I. From a purely

mathematical point of view the phase-field parameter can
be considered a tool that allows easier calculations of

solidification patterns. Mathematicians refer to this as a

regularisation of sharp interface problems. The sharp
interface solution is called a weak solution in that it

satisfies the solute and heat transport field equations in

an integrated form. The only mathematical requirement

to support a smooth but rapidly changing function that

represents an interface is a balance between two effects:

an increase in energy associated with states intermediate

between liquid and solid and an energy cost.

Mathematical Formalism and Evolution
E l' 1211qua Ions ' ,

By demanding that the entropy always increases

locally for. a system where the internal energy and

concentration are conserved, relationships between the

fluxes of internal energy and concentration can be

obtained. These are generalisations 'of Fourier's and

Fick's laws of diffusion. A separate relationship governing

¢ is required to guaran',ee that the entropy increases.

To treat cases containing interfaces, the entropy

functional S is defined over the system volume V as A

simpler isothermal formulation has been presented which
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has been appended a heat flow equation. This gives
essentially equivalent results to the entropy formulation

if £'e = O.

The enthalpy density is expressed as

h=ho+CpT+L¢I, (2)

where s,e,c, and $ are the entropy density, internal

energy density, concentration and phase field,

respectively, with E'e-E'c and E'¢ being the associated
gradient entropy coefficients. The entropy density s must

contain a double well in the variable $ that distinguishes

the liquid and solid. The quantity S also includes the entropy

aT a¢l
C -+L- = 'V. (h'VT) (3)

P at at ' .

which yields an equation for thermal diffusion with a

source term given by where ho is a constant: T is the

temperature, Co is the heat capacity per unit volume,
which in general depends on temperature: L is the latent

heat per unit volume: and k is the thermal conductivity.

An isothermal treatment forms the free energy functional
F, which must decrease during any process, as

[ 2 £2 ]F = [ f(¢I,e,T)- ~ l'Vel2 + ; 1'V¢l12 dV (4)

where f ($, c, T) is the free energy density, and where

the gradient energy coefficients have different units than

the (primed) gradient entropy coefficients used in

Equation 1. For equilibrium, the variational derivatives

of F must satisfy the equations,

aF = af _£~'V2<jJ = 0,
a<jJ a<jJ .

aF = af -£~'V2e = constant (6)
ae de

if the gradient energy coefficients are constants. The

constantin ~quation 6 occurs because the total amount
of solute in the volume V is a constant; i.e.,

concentrations a conserved quantity.

The parameters M~and Mc are positive mobilities related
to the interface kinetic coefficient and solute diffusion
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coefficient, respectiyely, as described below. Equations

7 and 8 have different forms because composition is a

conserved quantity and the phase-field is not. Equation

7 is called the Allen-Cahn equation, Equation 8 is the

Cahn-Hilliard equation. In this formulation, the pair are

coupled through the energy function f(¢,c,T).
Beckermann et al. 7.8 provide another approach for

obtaining the phase-field equations. This approach also

includes fluid flow, but here we present the case with
no flow.

illustrated for the low under -cooling limit in Fig. 2.

Convective effects on dendritic growth have beeI1 studied

by a number of investigators using the phase-field

methodG-9• Fig. 3 gives an example of a two-dimensional

simulation of free dendritic growth into a supercooled

melt, where the melt enters at the top boundary. with a

uniform inlet velocity and temperature, and leaves

through the bottom boundary. The dendrite tip pointing

towar9s the top boundary into the flow grows at a much

Fig. 3: Two-dimensional simulation of free dendritic

growth with Duid Dow. The melt enters at the

top boundary. with a' uniform inlet velocity and

temperature. and leaves through the bottom

boundary. (Adapted from ref. 1)..
~==" __ . "" - --··-·-....r-......~---··~---------------------20- -

The concentration equation is derived by writing the

following conservation equation using phase-field

weighted values for the average concentration:

Tne liquid and solid concentrations can be expressed in

te_inS of the average concentration c as where k is the

solute partition coefficient. This method is particularly
attractive if one does not wish to deal

hc

- c" [tnd Cs = <)J+k(1-<jJJ
CL - 1/'-I

with the energy functions to determine the phase

diagram. Here, only the values of 1'" M' mL and k are
required. The method also provides a sense of the

relationship between terms in the phase-field equation and

quantities such as the interface curvature and velocity.

Application Examples

Pioneering work in quantitative phase-field
simulations of free (equiaxed) dendritic growth have been
carried out1.2.3 in three dimensions at both low

undercooling (assuming local equilibrium at the interface)

and at high under-cooling with the incorporation of

anisotropic interface kinetic effects. In both limits, phase­
field simulations have been found to be in good

quantitative agreement with the sharp-interface

solvability theory of dendritic growth in which the

anisotropy of the interfacial energy and/or the interface

kinetics plays a crucial role in determining the

steady-state operating state of the dendrite tip. This is
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Three-dimensional dendritic growth simulation for a

dimensionless supercooling of 0.05 and a 2.5% surface

tension antsotropy. Snapshots of the structure are shown

at the times corresponding to the arrows, and the diffusion

field extends spatially 'on a much larger scale. {Adapted

from ref. 1).
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faster velocity than the three other tips, The predicted

heat transport enhancement owing to the flow at the

upstream growing dendrite tip is in quantitative

agreement with a two-dimensional lvantsov transport
theory modified to account for convectionS-g, if a tip

radius based on a parabolic fit is used, Furthermore,

using this parabolic tip radius, the predicted ratio of

selection parameters without and with flow is found to

be close to unity, which is in agreement with linearised

solvability theoryl0,11 for the ranges of the parameters

considered, Dendritic side branching in the presence of

a forced flow has also been quantitatively studied5, It

has been shown that the asymmetric side branch growth

on the upstream and downstream sides of a dendrite

arm, growing at an angle with respect to the flow, can

be explained by the differences in the mean shapes of

the two sides of the arm, Alloy results for isothermal

growth are shown in Fig. 41. Such simulations were
initiated with a small solid seed and a value of

--1imensionless supercooling of 0,86 (supercooJing divided

.'Fig. 4: Morphologies and microsegregation patterns for isother­

mal alloy dendrite growth showing region deep in the

mushy zone where liquid remains in the mush, (Adapted

from ref. 1).

by the freezing range) and thermodynamics for a lens­

shaped phase diagram. As for pure materials, simulations

of dendritic growth for alloys exhibit quite realistic

growth shapes, A dendrite tip radius is selected naturally
from the solution to the differential equations.

Simulations also show many other features common to

real dendritic structures; e.g., secondary arm coarsening
and microsegregation patterns. The local variation of the

liquid composition as it relates to the local curvature is

apparent in the mush, agreeing with that expected from
the Gibbs-Thomson effect.

Conclusion

Compared with. sharp-interface models of

solidification, the phase-field method employs an extra

field variable to describe whether a specific location is
liquid or solid. The burden of this extra variable and its

associated equation is offset by the avoidance of the

mathematically difficult free-boundary problem for

complicated interface shapes and the ability to handle
topology changes. Realistic simulatio,s of dendritic

growth and other solidification microstructures can then

be obtained using relatively simple numerical methods,

although computing requirements can become excessive.

Computations of dendritic growth using the phase­
field method have provided some of the most realistic

simulations of this complicated phenomenon which

involves an interplay between diffusion in the bulk
phases and surface energy and kinetic effects at the

solid/liquid interface. Simulations performed using

phase-field based powerful numerical algorithms have
provided a better understanding of the nature of the

interaction between the various physical mechanisms and

/have allowed material scientists and physicists to test

and niodify existing simplified theories. Currently, it has

been proposed to use the micro-scale study of dendritic

growth via the plase-field computations to guide the

development of meso-scale models which can then be

employed in large-scale computations for the

solidification of castings. As it has been well accepted

that. casting simulations can reduce the development

costs and improve the quality of cast parts,
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