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Traditionally metal forming processes have attracted

attention of investigators interested in developing

analytical models of metal working processes. Upper bound

and lower bound techniques are the results of such efforts.

However, the shortcomings of these techniques such as the

capability to get limited information (i.e. approximate

determination of load and power only) and application to

generally axi-symmetric cases alone remained major

limitations. This remained the only analytical method

available to the users of metal forming processes till late

sixties and early seventies [1]. The situation started

changing in early seventies when use of numerical techniques

became common even for complex problems because of the

availability of high speed computers. A very strong

numerical technque, finite elements method, came into

prominence and attempts were made to use it to solve the

traditional metal forming problems of forward and backward

extrusion [2,3,4]. This paved the way for extracting much

more useful information from mathematical solution such as

strain rate distribution, knowledge about total plastic

strain for indentifying possible locations of fracture

beaides the conventional results of extrusion load and power.

Attempts were also made to analyze temperature distribution

and assess its effect in hot metal-working processes [5].

Such thermal effects are impossible to analyze using the

conventional upper bound and lower bound techniques . Since

then the progress has been fairly rapid in the application of



finite element technique to analyze various metal forming

processes. Eighties saw great strides in the application of

FEM in metal forming. This method has been used to analyze

extrusion [6], slab rolling [7,8,9], strip rolling [10],

forging [11,12], stretch forming [13] etc. The recent

approach is to integrate several different effects in single

solution such as heat flow, stress analysis etc., where one

affects the second and vice versa. Such coupled analyses

have lately been reported and applied to metal forming

problems [6,14].

INTRODUCTION TO FEM

The finite elements method involves dividing the whole

zone of analysis into a large number of small sub-dividions,

known as elements. Elements may be of different shapes but

generally triangular elements are chosen for two dimensional

body having uniform thickness and tetrahedron elements are

used for three dimensional objects. The size of elements may

vary within the body with small elements being used in

regions of high stress or temperature variation so that

desired accuracy can be obtained in the solution. The

corners of the elements are called modes and the values of

the parameter (say temperature in heat flow analysis and

displacement in stress analysis) at the nodes are the unknown

variables of the problem. Hence, there will be as many

unknowns as the number of nodes or if there exist more than

one unknown at a node (say displacements in x-and y

directions) the total number of unknowns will be appropriate

multiple of the number of nodes. To solve the problem, the

governing equation/s (which may be heat conduction equation

or force equilibrium equations) is satisfied at each node

using any one of the several techniques available. Thus

consideration of all the nodes in this manner results in as

many linear equations as the number of unknowns at the nodes.

Any method available for solving a set of simultaneous

equations can be used to solve these equations to cget

results.
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The problem of computing coefficients for such a large

number of equations and solving these can be tackled only by

means of a fast computer with sufficient memory. The

advantage of the method lies in the fact that different

material properties can be considered in different elements

depending upon the situation prevailing there. Say for the

case of elasto-plastic thermal stress analysis the yield

point of the material will depend upon temperature which will

be different in various elements. The versatility of the

method makes it suitable for application in many areas such

as structural mechanics, dynamic heat flow by conduction and

convection (especially cooling of castings and weldments),

fluid flow, plastic flow of metals and polymers (metal

forming), electric and magnetic field distribution, diffusion

of material etc. The governing equation/s of the phenomenon

are to be written in finite element form, which is not often

difficult.

The procedure for general finite elements formulation

is explained in appendix I with the example of 2 dimensional

stress analysis using triangular elements.

APPLICATION TO METAL FORMING

Different metal forming processes pose the problem for

mathematical formulation in different ways. Thus the various

approaches used for solving these various forming problem

differ somewhat from each other. The problems of hot or cold

extrusion or rolling of slabs or strips generally involve

perfectly plastic behaviour of the material when it passes

through the extrusion dies or rolls in rolling operation. A

rigid-perfectly plastic material behaviour may be assumed.

Also the conditions of stress and strains over a point,

located with reference to origin at die or roll, remain same

throughout the operation. It can be visualized as if a

viscous fluid is flowing through the die or rolls under

steady state condition. Similarity between the flow of

viscous fluid and such metal forming operations is exploited

here and such formulation is known as "flow formulation". In

! d 111,
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hot forging operations in open or closed dies again the

material may be assumed to behave like rigid-perfectly

plastic material. However, the condition are not in a steady

state and the shape of the preform is charging continuously

during the operation. Unsteady state "flow formulation" can

be used for such cases. In operations like press working or

stretch forming, the various regions of strip may be under

different states of elasto-plastic strains However, the

displacements are very large compared to dimensions

(thickness) of the strip. Here elasto-plastic analysis is to

be carried out but the theory of infinitesimal strains cannot

be used and appropriate large displacement formulation for

strains is to be used. This approach has sometimes been

applied to processes such as extrusion and rolling also.

Thus basically there are two approaches for analyzing

stresses and strains in metal forming operations.

(1) Flow formulation

(2) Large displacement strain-formlulation

(or geometrically non-linear problem)

For analyzing temperature distribution, unsteady or

steady state heat conduction equations are solved using

Euler's theorem of variational calculus or weighted residue

approach with Galerkin process.

The formulation for these cases are explained in

standard text books [15]. A problem which is faced in the

applications of these methods is the consideration of

temperature dependent or strain rate dependent metal

properties. Thermal conductivity, specific heat, yield point

are the examples of temperature dependent metal properties

while effective coefficient of viscosity for metal flow is

the example of strain rate dependent property generally

encountered when flow formulation or even large strain

formulation is used. Consideration of such properties

demands number of iterative solutions at every step so that

desired variation in properties can be suitably accounted.

Methods are used to reduce the number of iterative steps so

as to reduce computational time and keep it with in
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reasonable limit. Newton-Raphson method; suitably developed

for matrices, is generally used for this purpose. Yet, the

number of steps and total computation time becomes quite

large,as will be seen from the examples given here.

EXAMPLES

A few examples of finite elements method to various

metal forming operations are reported here which are taken

from recent literature.

1. Plate Rolling

The problem of hot rolling of plate has been analyzed

by several investigators [7,8,9]. In some of these [7] the

thermo -mechanical coupling is considered where the strain

energy of plastic flow is considered as an additional source

of heating. The analysis of plastic strain has been carried

out [9] and effective plastic strain in different region of

plate is reported. The author also points out that the

total equivalent plastic strain is an important variable for

tracking the microstructural evolution of steel in the plate.

For analysing single set of parameters , the number of

iterative steps reported are 99 to 205 and the actual

computation time on a fast computer has been reported to vary

between 3.5 and 7 hrs . for each set. Some of the results

reported there are shown in figure 1. The amount of

information available from these solutions is obviously quite

appreciable which can be used for arriving at important

mechanical and metallurgical conclusions in a logical manner.

2. Strip Rolling

The distortion of thin strips is a problem during the

rolling operation and this has been analyzed by Yukawa et.

al. [10] using large displacement strain formulation and

finite element method. Some of the results are reported in

figure 2. He has analyzed stresses in the two cases of flat

rolls and crowned rolls, which show different distorted

shapes and distribution of residual stresses . The effect of

the magnitude of residual rolling stresses has also been

analyzed to show that for some thereshold distribution of
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redisual stress no distortion accurs in the rolled plates.

3. Stretch Forming

Stretching and large deflection of strip generally

occurs during drawing operation when the parts are fabricated

by press working. The problems like excessive strains and

fracture and spring back are common in such operations. FEM

has been used to analyse such problem and the results are

reported [13] for simple square punch forming as well as

forming of complex oil-pan of automobile in aluminium alloy.

The places where fracture is expected to occur are identified

on the basis of strain distribution. Experimental

observations have shown that these were the places where

fracture actually occured. figure 3 shows some of the

results reported. The method has used large deformation

stress formulation with consideration of friction and work

hardening.

4. Forging

Several investigators have reported finite elements

formulation for forging operation [12,14]. The example

reported here is that of forging of an automobile

differential Crown [12]. The method again uses large

deformation strain formulation. The friction between die and

preform is considered. A special algorithm, using gap

elements, has been developed to detect the instant when the

metal being forged makes contact with the die surface. At

this instant boundary constraints start applying on the

forging preform. Figure 4 shows various stages during

forging of this component as analyzed using the method

proposed. Quadrilateral axisymmetric ring type elements are

used. Only one half of the cross section is shown in the

figure since the other half is symmetrical. The top die was

moving down with a velocity of 226 mm/s. A non-work

hardening elastic-plastic material was assumed. Friction was

applied using the cohesive model with a constant friction

factor of m = 0.15 on both dies. As the top die moves down,

the state of stress and plastic strain in all the elements

was determined after each small increment of time. The first

14
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set contained 116 elements and initial time increment

considered was 0.0039 sec. After 20 such increments the

state of forging is shown at (c) in the figure. At this

state some of the elements have become highly distorted so

remeshing was done and number of elements increased to 224.

This is shown at (d). After 15 more steps, the deformed mesh

is shown at (e). Remeshing was done again and the time step

now reduced to 0.00195 sec. The number of elements increased

to 294 introducing more elements at the point where flash

formation started. The state of forging after a total of 56

steps is shown at (g) in the figure. The final position of

dies and forging after next 5 steps of 0.001 sec. is shown at

(h). The final distribution of plastic strain is shown at

(k). Regions of large localised strains are very obvious in

the figure.

FEM PACKAGES

There are a number of finite element packages

available. Traditionally, the packages have placed more

emphasis on the development and formulation for elements used

more commonly for stress analysis in structures. Few of

these also provide formulation for heat conduction analysis

and also fluid flow analysis. Provisions for considering

large deformation strain formulation may also be present.

More elaborate packages have provision for considering

plastic behaviour of metal and also the temperature dependent

material properties. Modelling for coupled analysis is a

recent phenomena and these provisions may not be available in

the packages. However, packages do help the investigators

by saving him from lot of time consuming hard work and

frustation inherent in developing his own programme. In the

examples shown above the investigators have generally used

the packages developed by themselves.
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APPENDIX

Formation for Finite Elements Analysis of 2D Triangular

Element

Figure 5 shows a triangular element drawn in x-y

Cartesian coordinate system. The coordinates of the three

nodes i, j and m are xi, yi .. etc. Small displacements of

the nodes due to straining of the element are designated as

ui , vi ... etc. and the corresponding forces acting at the

nodes due to adjoining elements or from external sources are

designated as Ui , Vi etc. An assumption is made that the
9

displacements u, v vary linearly within the element, which is

a reasonable assumption when the size of triangular element

is small' (many other types of non linear variation of u, v

within the element have also been analyzed). The general

expressions for displacements u, v within the element can be

written in terms of nodal displacements ui , vi etc. First

the expressions for u, v are written in terms of coefficients

,al,a2 ..* a6 and then these coefficients are determined to

give expressions for u, v in terms of nodal coordinates and

nodal displacements, as weitten in figure 5. It is

convenient to write these expressions in vector and matrix

form. The vector (ae) is elemental displacement vector

having three component vectors (ai),(aj) and (am) a( the three
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nodes which themselves have two displacement components as

shown in the figure. The relationship between general

displacement vector and nodal displacement vectors is written

in matrix notations as
(u') = [N](ae)

The matrix [N] is known as shape function. The

strain vector is designated by (c) infigure 6 and it is

written in terms of operator matrix [L] and displacement

vector (u'). It should be easy to understand because strain

is defined in terms of differentials of displacements. The

expression can be written in more compact form in terms of

matrix [B] and vector (ae) as shown. Since stresses and

strains are related through the material properties (E,

Youn-g's modulus and , v Poisson's ratio), the expression

for stress vector (o-) can be derived using the individual

relation between cx) a,x etc. as written in figure 6. Thus

stress vector(a) can be written in more compact form in

terms of elasticity matrix [D] and strain vector je?.

On writing down the expression for potential energy

over the whole traingle for linear variation of stress with

strain we get,

P.E (c)T(v)t dA

A

where the integral is to be taken over the whole area, A,

of the traingle . 't' is the thickness of the element. It

can be rewritten in the form

P.E = 2 (c)T[D](c)t dA

JA

= 1 SQ^ [B]T[D] [B]t dA, (ae)
A

^(ae} being constant over the area of integration A)

On adding such expressions for all the elements ( n

and then minimizing the total potential energy (including the

work done against the external forces) with respect to nodal

displacement, we get the final expression as



[K](a) = (R) -----> (1)

n
where [K] _ E [ke]

e=1

and [ke] _ [B]T[D][B] t dA for element `e'

JA

[Rfis the vector designating the external forces acting at the

nodes and (a) is the vector comprising the displacements at

all the nodes (m) i.e.

Ial u l
(a) = a2 v1

a = u
.

3 V 2

2
> (2)

I am
u

v i

Equation (1) is thus a set of "2m" simultaneous equations in

terms of 2m variables shown in eg. (2), (for 2 dimensional

case ). These equation can now be solved to get the values of

ul , vi... um , vm at all the nodes . Any standard technique

available for matrix inversion can be used. The

displacement ui, vi.... etc. so determined can be used to

determine stresses etc. in all the elements using the

expressions developed earlier and shown in figure 6. The

above, treatment is fairly simplified and the general

expression will contain several other vector terms as shown

in figure 6.



77 177" Roll

FEM GRID

TEMPERATURE ISOTHERMS

E=0.25

EFFECTIVE STRAIN SYMMETRIC ROLLING

J
0
0

LIB



SHEEQ' ROLLING

-lnm, b^-150nm , 1.60Unm, r-101 , T,=O, flat rolI

(a) Long edge

Calculated shape of strip during
rolling.

hi-1mm, bi-150mm, I-600mn, r-10x, T,-O, Flat roll

0

(a) Long edge

00
01

0
0

To p

hj-lnm , b,-150mn, t-600nm, r-6%, T,-0, Crown roll, (kgf/ nrn, 2)

I
1

(b) Long middle

Longitudinal residual stress
.during rolling.

lop

N.YUKAWA ,1986

,,,

N.Yukawa T.Ishikawa & Y.Tozawa , Numerical Analysis of the shape
of Rolled strip, Proceedings Numiform '86 Gothenberg Publisher
A.A.Balkema , Rotterdam 1986 ,p.249 - 254.

Fig.2(a) - Analysis of Sheet Rolling



SHEET ROLLING

(a) 0cmax - 77.8 k9f •niii - l

(b) °,:m1 x -22.0 k9 f • nm- )

(C) `rcrrwx -26.8 k9r•nm

-33.6 k9f. rTTn

Shape of plate after buckling
(long-middle).

N.YUKAWA ,1986

Fig.2(b) - Analysis of Sheet Rolling
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SQUARE-BOAC SHAPE PUNCH

Fig-3(a) - Analysis of Stretch Forming of Square Punch
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STRETCH FORMING

The maximum

height =39mm

(a) ~>' -
Geometrical model of the punch

p = 0.02
6

0.06

0.02

E.NAKAMACHI ,1986 ,1988
Z =Punch travel

Eiji Nakamachi Finite Element Modelling of the punch press
Forming of thin Elastic-Plastic Plates Proceedings Numiform '86
Gothenberg Publisher A.A.Balkema , Rotterdam 1986 ,p.333 -338.

Eiji Nakamachi , A Finite Element Simulation of the Sheet Metal
Forming Process ,Int.J.for Num.Methods in Engg., vol.25 ,1988
p.283-292.

Z

24 mm

Fig.3(b) - Analysis of Stretch Forming of Oil-Pan



Figure Q Dies and preform for a
differential crown

Figure Initial mesh

Figure A First rezoned mesh

..................................

Figure (3. Deformed mesh after 35
Increments .

......

.............
.................. ......

Figure C Deformed mesh after 20

increments
Figure f Second rezoned mesh

Fig-4 - Analysis of Drop Forging of Automobile Differential_ Crown



Figure 9 Deformed mesh after 46

increments

....................................

Figure 11 • Deformed mesh after 51
increments

1) 0.20000

2) 0.60000

3) 1.00000

4) 1.40000

S)., 1.00000

6) 2.10000

Figure i k Effective strain contours
after 51 Increments

Fig-4 - (continued)
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u = at +a2.x+a3y,

v = as+asx+a&.y.

u; = at +a2x1 +a3y,

ui = at +a2x, +a3)'j

u- = a, +a2xm +a3Ym

x

u = -Q1 ( a;+ b ;x +c' Lv)uj+ (aj + h,x+(-yy )uj +(um + bmx +cm)')um}

in which

h, = j - l'm = yam

2A=det = 2 (area of triangle iim).

U = ^Ul =1ti1Sa'^= [1Nj, INi, 1N„aae
r

with I a two by two identity matrix, and

N; = (a;+b;.x+ etc.

ae = a1 t , .

1t`'l
14

Fig. 5 An element of a continuum in plane stress or plane strain
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e=

r a;

E =[B]{ ta'j= [B„ B,. Bm] aj

with a typical matrix B, given by

rc,.v.
B,=LIN,= -.0

cx 2A
h,, 0

0. C.,

c•,, h,

[D] =

e. = ajE- vay,/E

e,, = -va„/E+a)E

7xy = 2(1 + v)t.,/E

E
I v 0

v 1 0

0 0 0-0/12

a} _ [D] {e}

p t J - {e4TLo-c t (A

A

[K] raj -{R} = 0.

[K.i] _ [k i]e

[k]` J [B]T[D] [B ] d(vo!),

General Form

[K]fa 3 +{F}o+{F}b+{F},o+{F},o-{R} = 0.

Fig.6
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