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HE' major part of the industrial uses

of high creep-resistant alloys at ele-

vated temperatures and fairly high

stresses has been due to the development of
the gas turbine and the jet-propulsion en-

gines. Although Howe' as far back as 185

made investigation on the extension of metals

as function of time , and creep data were re-
ported by Andrade2 in 1911, there was very

little technical interest in the phenomena of

creep or in creep-resistant metals and alloys
until shortly after World War I, when
better materials were required for aero-engine

parts, for the petroleum and chemical in-

dustries at fairly high temperatures ( 400°-

600°C.) and sometimes under severely cor-

rosive conditions, for parts of industrial fur-

naces at high temperatures and for steam

turbines. The demand of materials re-
sistant to creep steadily increased during
World War II. But the greatest resistance

to creep at high temperatures and fairly

high stresses have been due to the develop-
ment of gas turbine and jet-propulsion en-
gines. An attempt has been made in this
paper to indicate briefly some of the metallur-

gical factors involved in the development of

high creep-resistant alloy steels with parti-
cular reference to turbine mat(•ri.tls,

A Brief Outline of the Problem

(a) The gas turbine parts , particularly the
blades, need a material resistant to fatigue
and corrosion . The designer would be happy
if, in addition , he is given a material with
low thermal coefficient of expansion and
fairly low density to minimize the centri-
fugal stresses at high speeds. The manu-
facturer would be happy to shape a material
if it has good working properties and high

machinability. The, alloy to developed

should thus possess:

(i) resistance to creep at high tempera-
tures and at fairly high stresses

(ii) resistance to corrosion

(iii) resistance to fatigue

(iv) good forgeability

(v) good machinability

(vi) low density

(vii) low thermal coefficient of expansion.

In order to get the desired alloy it has to be

borne in mind that some elements when
added to the base metal may be beneficial

for a certain group of properties but quite

harmful for some others. Sonic additions,

for example, are helpful for resistances
against creep and oxidation but detrimental

to forging characteristics and m_acliinability.

Tungsten alloys, for example, may have very

good creep resistance but will have poor
oxidation resistance. Moreover, due to the

high specific gravity of tungsten, the centri-

fugal stresses may be several times than those

for iron base alloys. Cobalt helps resistance
against creep, but seriously affects forge-

ability. Ferritic steels are better for some

properties while austenitic steels are better

for some other properties. A variety of metal-
lurgical features are thus involved in the

development of high creep-resistant alloys.

(b) When some desired specification of an
alloy is selected,, extra care need be given to
each of the different stages, viz. for melting,

casting, forging and heat treatment of the

alloys. A good alloy may be spoilt due to
faulty forging or heat treatment.

(c) Creep is a structure-sensitive property

to an extent far greater than most of other

mechanical properties. Hence no matter
how well an alloy is melted, cast, forged and f

or heat-treated, it is very essential that it is

31S9



190 51AIPO5lUl ON 1IR0I )UCTION, PROPERTI ES & AP1'Lll 'ATIONS OF STEELS

tested at or near the operating temperature.

In fact, ' the reputation for reliability ', to

quote Mr. Oliver, the Director of Research,

the B.S.A. group, and Mr. Harris, the Re-

search Manager, Jessop & Sons Ltd.,

Sheffield, ' achieved by British gas turbine

builders is to some extent a result of the

British practice of rejecting ruthlessly any

products which appear to be only slightly

sub-standard '. There is no reliable method

yet known to predict the creep properties

of an alloy. To obtain reliable design

data it is essential to carry out actual creep

tests.

(d) Availability and cost of the raw

materials have to be seriously considered in

developing an alloy. There are sufficient

theoretical and practical reasons to expect

that one or more of the high ►nelting point

elements in the periodic table as indicated

in Table 1 will be helpful to impart increased

creep resistance. But for reasons of high

cost and low availability many of these are

19.4

TABLE 1 - ELEMENTS USEF UL FOR THE DEVELOPMENT OF HIGH CREEP-

RESISTANT ALLOYS

m p °C -# 1800 1735

Ti V

9"^IC ►> ^. 4.5 5.7

'Itll p °C - 1750 2000

Zr Nb

^ ►'n/CM3 -+ 6.4 8'6

'mp •c - rroo 3000
Hf

Tc

9 ►m/Cnn3 - 11' 4 16.6

1950

Cr

7.1

2625

Mo

10.2

Mn Fe Co Ni

3010

W

not ordinarily used and only the following

elements need be considered:

(i) ('r, Mn, Fe, Co, Ni

iii) Ti, V. Mo, Cb. \V, Zr, Ta.
Elements in class (i) form the large bulk

of most of the creep-resisting alloys of both

the ferritic and austenitic groups. Their

effects are too well known. Elements in

class (ii) are added primarily to form con ► -

plex carbides and thus to enhance creep

properties by increasing the so-called ` com-

plexity effect '. Of these, the first four,

viz. Ti, V, Mo and Cb, are more often used.

Some Basic Considerations

Creep occurs essentially due to flow of a

material under it given set of temperature

and stress conditions. The creep strength

of a material is defined as the ► naximum stress

that can be applied at a given temperature

to cause flow of the material either at it

given rate or not exceeding a certain amount

2500 1970 1555

Ru Rh Pd

I
2700 2454 1774

Os (r Pt

22.5 22.4 21.5

N.S. ALL HAVE HIGH ME.LTING

POINTS,LOW ATOMIC VOLUME

(ATOM WT^"3 AND LOW ATOMIC HEAT.
1 tNSIT''
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TIME.

FIG. 1 -(A) CREEP STRAIN E AS A FUNCTION OF TIME 't'.

of extension ( say, 0.1 per cent ) in a speci-
fied number of hours ( say, 1000 hr.). A
typical creep curve at constant load and tem-
perature is shown in Fig. 1(A) where the
extension E is plotted as function of time t.

The corresponding strain rates dt or j are

plotted as function of tin Fig. 1(13). It may

be noted that

(i) there is an immediate initial ex-

tension e, consisting both of elastic
and plastic deformations (the initial

extension rate being given by tan ti
and represented as E; in Fig. 1(B) ;

(B) STRAIN RATE E AS A FUNCTION OF 't'

(ii) in the 'Primary Stage', the strain rate

E progressively decreases and tends
to approach a constant minimum

value '111 asymptotically 'FIG. 1(B) 1;

(iii) in the ' Secondary Stage ', the strain

rate Etn remains constant and thus the

linear portion of the plot in Fig. 1(A)
may be represented as

E = Eo i-E^nt

where Ene is the constant minimum

,strain rate represented by tan 0;

(iv) in the ' Tertiary Stage ' the rate j

progressively increases leading ulti-
mately to fracture.
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The empirical relationship between the
length 1 and time t in tensile creep which

was first reported by Andrade2 is express-

ed as

I _ l,,(1-l c3tt)eKt ( Andrade2) ...... (1)

where lo = length immediately after loading

and P and K are constants depending on tem-

perature and stress. If K is negligibly small,

the strain rate is given by

dl - Il 3t ( a)dta^^ l

Thus strain rate progressively decreases

corresponding to the primary stage of creep.

If becomes small, the strain rate is given by

l dl
Ida - K........... (lb)

Thus the strain rate is approximately con-

stant during the secondary stage of

creep.
Various other empirical relations between

creep strain and time t have been indicated

by different investigators. For example:

E = E,, + At -- F3 eat (McVctty3) ......(2a)
a

e = a log (1 +bt) (Tapsell & Prosser4) (2b)

= a log (1 + bt) -{- t (Chevenards) (2c)

a log { + E„lt (\Veaverfi) ........ (2d)
"

eft' ( Sturm, Dumont & Howelh) (2e)

where A, B, a, b and h are material con-

stants and is the minimum creep rate.

From the above it is evident that all creep-

time plots cannot be represented by one

mathematical relation. It is sometimes con-

venient to classify creep-time plots' ( prior
to accelerating creep in the tertiary stage)

into three groups:

(a) Parabolic :
e = at'"-{-b ( l>m>0, a>0) .. (3a)

(b) Exponential:
e=a logt +b (a>0).... (3b)

awii^

(c) Hyperbolic:

E at`+h (in<0, a<0) ...(3c)

During the secondary stage of creep the total

deformation at some time bevond that of the

test period inay be obtained from

E - En + E,nt . . ... . ... (4-)

where t implies the time within the secondary
stage- It is necessary. however, to know in
this connection the nature of the variation

of and E„ tinder different conditions of
stress and temperature.

Variation of Minimum Strain Rate 6 M
and Strain Constant E,, with Stress and

Temperature

At low stresses it is believed that creep is

essentially clue to viscous flow and hence

E,n is proportional to a and, therefore, may he
expressed as

E,,, - Av ( linear) .......(5a1)

where A is sometimes called the ` flow-

ability ' constant or the miiaimurn strain

rate per unit stress. At very low stress-

levels, A depends on temperature 1' but not

on stress v. With increasing stress, however,

it is well known that creep is not truly viscous

in nature ( (Iuasi-viscous ) and A then de-

pends both on v and T and is sometimes ex-

pressed as

A=E'"=A0e'. .......(5a.2)
a

and A A
i
o (5a3)

It is evident , therefore, that plots of log (e11^a)

as function of al or ;17 should yield straight

lines. This has been found to be true by
Kanter9 for a 0.7 per cent C steel. Time

energy of activation Q is found to be
90 x 103 cats./gm.-atone which, it is interest-
ing to note, is of the same order as the

latent heat of evaporation and self-diffusion
in iron ( 78;< 103 cals./gm .-atom ).
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For many alloys including steel the follow-

ing two relations hold good within wide

ranges of stresses and strain rates ( 10-5 to
10-'; per cent per hour ) :

C, ( 1-crs'rs^ ) ...... (5b)E,n =

exponential or seniilogarithlnic relation10 )

and i., ^ au" ( power relation) ... ( 5c )

For it large variety of steels the power re-

lation (5c) is found to be superior and is,

therefore, widely used. At low stress and

strain rates ( less than 10-5 per cent/hour ),

however, the available test data deviate ap-

preciablyr' from (5c). Moreover, all these

relations are rare or less empirical, Nadaiil

from theoretical consideration has suggested

that

Em = E4 si nh Q . . . . . . . . (5d)

a0

( hyperbolic sine relation"

It may be noted that (i) equation (5d)
reduces to the forms of (5a) and (5h)
according as a is small or large and (ii) a

power function defines a tangent to a hyper-
bolic line curve and thus equation (5c) may

he a close approximation to (5d) under
certain conditions.

It is of interest to note that the strain con-
stant co as function of or and T follows more

or less the same relations as those of E,,, and

thus may be expressed as

Ea = fa sinh . .... , ..(6a )or
ap

and Eo- Eae 2'IRT ........ ( 6b )

It is obvious that equation (6a) reduces to

linear or exponential function according as

a is small or large. This confirms McVetty's

suggestion that at moderate and high stress

levels Eo varies exponentially with stress.

Combining equations (l), (5d) and (6a)
one gets

E = Co sinh U + (Eo sinh )t . . .(7)

a. CO

A more generalized expression based on the
reaction range theory12 has recently been de-

veloped by Condonla and others14-16 in which

creep is visualized to occur clue to an average

jump or flow x of unit domains (groups of
atoms or ions in the lattice ) having energy
greater than that of the average potential

barrier. This leads to the expression

c.)
-f sinh k,r ............ (8)

where c,) = caXT

and
2 x kTeAP/kT

Yo=^3yi- ...... (9x)

Y is the constant shear creep rate under
tensile stress r at the absolute temperature
T; x is the average j ump of the unit domains
separated by a distance y; x is the projected
area of the domain along the stress plane; k,
h and R are the Boltzmann, Planck and gas
constants respectively, and c is a stress-con-
centration factor. It may be easily shown
that if the work done in carrying a unit
domain from the normal to the activated
position be small , that is, if w be small com-
pared to kT, equation ( 8) becomes

w cax
lY =Yo k-I- =Yo k. T .. (8a)

Hence at a constant temperature the strain
rate y becomes proportional to the stress r

and thus the flow is of a viscous or Newtonian
type [cf. equation (Sal) ]. For larger values

of T similarly it may be shown that equation

(8) leads to

Y = Yoe(,I/kT .......... (8b)

If at a given temperature T. log Y be plotted

as function of tensile stress r, the slope of the

lines gives ( cax ) and the intercept the value

of Y.. If now log, YO be plotted as function
T

of 1 equation (8x) indicates that the slope

ofof the line gives AF and the intercept helps

to compute the value of K. The general
y

feature of metallic flow seems to suggest

that flow occurs by nmeans of so-called.
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' dislocations ' forming at relatively few

points in the lattice. The lateral dimensions

of the dislocations are strongly temperature

dependent. It is also found that the free

energy of activation AF in equation (8x)

does not vary widely from metal to metal..

Metals with large value of y ( creep rates )

have a large lateral extension of dislocations
while metals which do not flow easily have

comparatively smaller extension, that is

smaller values of ( cax ).

Such theoretical discussion is, therefore,

helpful in the development of creep-resistant

alloys. For a given stress T and tempera-

ture T, the value of flow rate r will be small
if AF be large and ( cax ) be small.

OF may be made larger by using metals

of high elastic moduli and ( cax) may he

made smaller by the introduction of so-
called ' dislocation ' barriers and ' carbide
formers.

In spite of the good attempts to develop

mathematical relations explaining the pri-

mary and secondary stages of creep, there is

no quantitative physical theory which suc-

cessfully explains the omp phenomena as a

whole. Also there is no safe quantitative

relation between creep and the mechanical

properties of steel or other metals and alloys.

Metallurgists and engineers have, therefore,

to rely on actual creep rupture and exten-

sion time data and the factors affecting

creep.

Factors Affecting the Creep Properties

Creel) properties are affected by (1) tern-
perature , (2) stress, ( 3) structure , (4) treat-
ment , ( 5) environment , and (6 ) composition.

(1) Temperature -. In connection with the
effects of temperature it may be noted that:

(1) at a lower temperature there is a
prolonged stage of constant rate sec-
ondary creep and fracture may not
occur if load be low;

(ii) with increasing temperatures the stage

of secondary creep rapidly decreases;

(iii) at high temperatures the primary

stage of decelerating creep rate is soon
followed with a point of inflection by
the rapidly accelerating rate of ter-

tiary creep . The secondary creep may
be altogether absent.

In general , creep increases almost ex-
ponentially with temperature cf. equations
(5a) and (bb) ].

(2) Stress - The effects of increasing
stresses on creep curves are more or less
similar to those of increasing temperatures.
Different theoretical and empirical rela-

tions have been developed by various investi-
gators as indicated before. It should be
noted here that most of the alloys undergo

structural changes when subjected to stress
and high temperature for long periods of
time and hence do not obey any of the em-
pirical relations. It is extremely unsafe,
therefore , to rely on extrapolated data from

short -time creep tests. To obtain the correct
design data at high temperatures and stresses
it is essential that creep tests are carried out
for periods at least equal to those for which
the material will be stressed in service.

(3) Structure - Creep is highly structure-
sensitive property and is affected by minor
variations to it greater extent than any
other mechanical property . Some of the
common structural factors affecting the creep
properties are grain size, soluble elements due
to soluble impurities anchor alloy additions,
insoluble phases due to insoluble impurities,
phase changes and/or precipitation and allied

phenomena.
It may be shown from theory that yield

stress Y is nearly a linear function of the con-
centration of the solute atom. It May also be
shown that Y varies as the square of the dif-
ferences of the atomic radii . Similarly for

small concentration of soluble elements, re-
sistance to creep may be a simple function of
the concentration or differences of the atomic
radii . At large concentrations , however,
the relation may be rather complicated clue

to the diffusion coefficient increasing the
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creep and thus counteracting the effects of

lattice distortion. It is not unlikely, there-

fore, to expect a minimum in the plots of

creep as function of atomic concentration.

It has been found in some cases ( for example

in Ni-Cr alloys precipitation-hardened by

Ti ) that precipitating element should be

present in slight eXCeSS of the solubility limit

at the service temperature to get the optimum

creep strength.

(4) TreWment - From what has been dis-

cussed before it will be evident that for

services at low temperatures when atomic

migrations due to recovery or recr_ystalliza-

tion are small, the heat treatment which

corresponds to maximum strength and hard-

ness also corresponds to maximum resistance

against creep (e.g. quenching or quenching

followed by ageing to maximum hardness ).

For higher temperatures, however, when

atomic diffusion is large resulting in the so-

called 'Place-change-plasticity' and causing

recovery, recrystallization, phase changes

and/or precipitation, the heat treatment

should be directed towards attaining strain-

free and metallurgically stable phases. For

heat-treatable alloy steels, normalizing at

comparatively high temperatures and for

longer periods of time, and quenching follow-

ed by tempering is usually recommended.

For age-hardening type alloys, solution heat

treatment at high temperatures ensuring

complete homogenization and large grain

growth followed by stabilization of the pre-

cipitate at about the operating temperatures

is recommended.

(5) Environment - The atmosphere to

which a metal or alloy is exposed in ser-

vice seriously affects its creep properties.

Selective oxidation or corrosion of the

grain boundaries and/or elements in the

alloy may cause accelerated rate of creep.

Since the surface properties of the alloys

are primarily responsible for such reac-

tions, the alloys in question are often given

a protective treatment to inhibit surface

reactions.

(6) Composition - Detailed quantitative

knowledge about the effects of different ele-

ments (either individually or in combination)
on the creep strength of steel is rather meagre.

Elements in general affect the creep properties
in two ways which may he looked upon as-

(i) solid-solution effect, and

(ii) precipitation effect.
Creep strength is increased initially more or

less by all elements in solid solution in iron.
But the order of solid solution strengthening

of elements at ordinary temperature is not

of much help to get creep resistance at high

temperatures. Silicon17, for example, which

is one of the most effective hardeners of
ferrite is one of the most ineffective at higher

temperatures. The effects of different ele-

Inents'A on the creep strength ( stress to pro-
duce creep rate of l0-' per cent/hour) of com-

mercially pure iron at 800°F. are shown in
Fig. 2. The very large effect of Mo, the very

2 3 4

010 ELEMENT.

FIG. 2 -CREEP STRENGTH IN 1000 P.S.I. TO PRODUCE

CREEP RATE OF 10-4 PER CENT PER HOUR AS A FUNC-

TION OF PER CENT ELEMENT ADDED TO COMMER-

C1At,Ly PUR E IRON AT 800 °F. ( 425°C.) l AUSTIN'S
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little effect of Ni and the intermediate effect

of Mn may be noted. There do not seem
to be any relation between gamma-stabiliz-

ing and ferrite-forming elements. Carbide-

formers like Mo, Cr and Mn appear to be more

effective than Si, Co or Ni. The positions of

the elements Cr and Mn on the one hand and

Co and Ni on the other with respect to iron

in the periodic table are also noteworthy.

A comparison of Tables 2 and 3 shows

that elements which are effective in raising;
the crystallization temperature of iron are

also effective in increasing creep strength.

Experimental Results and Discussion

On the basis of what has been indicated

before several alloy steels have been melted

in a 40 k\V. induction furnace at the Bengal

Engineering College Metallurgical Labora-

tories. Compositions of the steels are shown

in Table 4. The properties of several steels

have been tested with reference to their

tensile properties at room temp ^rattire, re-

sistance against oxidation at 700'-900°C.

and short-tinge creep behaviour at 650'-700°C.

Typical results are shown in Fi >. 3 and 4

and Tables 4 and 5.

It may be noted from Fig. 3 that so far as

oxidation resistance in air is concerned steel I

is the best obviously due to its higher chro-

mium content. And for the sam - reason

steel IV has better oxidation resistance com-

pared to those of steels II and III. It is
obvious from Fig. 4 that steel I has the bast

creep resistance ( except nim,mic SO which is

indicated in the figure for comparative

study ). All the steels I-IV were tested

for creep after ageing for 8 hr. at 650°C.

A typical plot indicating the effects of

TABLE 2 --SHOWING THE EFFECTS OF ELEMENTS WITH OR WITHOUT C AND
THE EFFECTS OF TEMPERATURE ON THE ORDER OF ELEMENTS AFFECTING

THE CREEP STRENGTH OF IRON (Austin's)

TEMP. ,F */* r_

$00

Boo

75O O-I

930 0.1

0.5 f V Mo

0.5% Mo V

W_ Cu Lr Si TI M^ Co Ni

TI U Ce KMA Ca w Sf Ni

TABLE 3 -- SHOWING THE EFFECTS OF ELEMENTS ( AT DIFFERENT REDUCTION
PER CENT ) ON THE RECRYSTALLIZATION TEMPERATURE OF IRON ( Austin")

%REDUCTION ELEMENTS IN DECREASINGe ORDER

EFFECTS ON RECfiYSTALLISAT1ON

OF THEIR

TEMPERATURE

5 °4 Cr Mo Mn Si Ni Co

20% Ma Cr Mn Si Ni Co

40% Mo Cr Mn Si Ni Co

75% Mo Mn Cr Si Ni Co

go% Mo Mn CI• Si Co Ni

-.ELEMENT . -• ELEMENTS IN DECREASING ORDER OF THEIR EFFECTS ON

CREEP STRENGTH.

NIL 19 Mo

2'9• Mo

Cr Mn Si Ni Co

Mn Co - Si Co Ni
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080

14
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u
z

I 2 3

TIME IN HOURS.

4 5

FIG. 3 - INCREASE IN WEIGHT ; W IN MGMI.I MM.2 AS A FUNCTION OF TIME ON HEATING IN AIR AT 800°C.

0.50

0.40

0
0

2
0 0.30

I-

z

0
W

0.20

0-10

0 10

TIME IN HOURS.

100 1000.

FIG. 4- ELONGATION PER CENT AS FUNCTION OF TIME FOR STEELS II, 111 AND IV (O.Q. 1100°C.,
I HR .; AGED 650°C•, 8 HR.) UNDER A CONSTANT LOAD OF 8 TONS/SQ. IN. AT 650°C.
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TABLE 4 -COMPOSITIONS OF STEELS I, II, III AND IV

STEEL C Si Mn Cr Ni Ti V C Df'l W

I 0.3 0.8 17.7 11.8 0.7 - 0.3 3-5 0.25 0.6
II 0.2 0.7 18.2 8.9 1-0 - 0.8 - - -

III 0.3 0.8 18.6 8.6 - 1.2 0.1 1.0 0.10 0.5

IV 0.3 0.7 19.2 9.8 - - 1.5 1.0 - -

TABLE 5-TENSILE PROPERTIES OF STEELS AT ROOM TEMPERATURE UNDER
DIFFERENT CONDITIONS OF THERMAL TREATMENTS

STEEL IIOT FORGED ANNEALED 90(IC. O.Q. I lOO C. 11,R. A(-.En 650"C. AGED 050 C. 8 7IR.

E., R.A., DI.S., E., R.A., ,M S., R.A., .11-S., E.., R.A.,

tons/
sq. in .

tons/
sq. in.

io tons

sq. in.

tons /

sq . in.

tins,

Sq. in.

I 46 21 32 43 26 37 53 37 41 55 30 39 54 30 38

II 50 25 33 49 27 39 55 38 46 58 34 45 57 34 44
111 56 46 43 56 48 48 65 52 53 59 58 55 59 57 54

IV 54 48 38 53 52 43 58 54 48 56 58 45 55 56 46

ageing for a shorter period of time is also
shown in Fig . 4 (Plot lB in Fig. 4). Al-

though the initial rate of creep is larger
( Plot IA ) for longer ageing period, the rate
tends to decrease much more rapidly than

in IB. It is also clear from a reference to the
analyses of the steels that the comparatively
better creep resistances of I and Ill are clue
to the so-called ' complexity effect ' of
elements \' to \V with or without Ti. It ap-
pears that simultaneous increase of V and Mo
( compare steels I and I I I ) even to a smaller
extent has a better effect on creep resistance
than the addition of about 1 per cent Ti.
Further work, however, is necessary to
establi'li this tract.

Conclusion

From the work so far done it is concluded
that

(i) there is a possibility for the develop-

ment of Mn-Cr alloy steels resistant

to oxidation and to creep with Mn

content around 17-20 per cent;

(ii) chromium appears to be most effective

in increasing oxidation resistance when

present in excess of 9 per cent;

(iii) for keeping the steel austt•nitic and

for reasons of forgeahility and maclain-

ability and at the same time to retain

the ' complexity effect ' by the ferrite
formers --- the limit of Cr appears to

be around 11 per cent with 17-20

per cent Mn and 0.2-0.3 per cent C;

(iv) to get fair amount of creep resistance,

combination of elements Mo, V, Ti

and \V has to be taken recourse to

with as little \V as possible for reasons

of specific gravity and to guard against

poorer resistance to oxidation.
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DR. B. R . NIJHAWAN ( Dy. Director , National
Metallurgical Laboratory )

The work done at the Aloud Nickel Co. Ltd. in the

U.K. on the hardenability of boron-free and lxxon-

treated triple alloy steels containing 0.15-0.53 per

cent carbon was investigated by means of Jominy

tests on specimens from 4 in. billets and showed

marked variations in the hardenability in boron-

treated steels. But on the average there is con-

siderable improvement in the hardenability what-

ever the boron content was. This subject has been

recently worked upon in the U.K. by some who have

noted extremely marked variations in the harden-
ability tests. This subject should be examined

most thoroughly in order to dispell the doubts

about the boron-treated steels which very often go

a long way to prevent their acceptance in many

countries , including the U.K., and perhaps it will

be a more deterrent factor in this country where

any doubts expressed very often preclude its use
entirely.

MR. E. 11 . BITCKNALL

I would like to ask Mr. Sewell regarding the

corrosion resistance of I per cent Mo-B steels.

MR. J. F. SEWELL ( Samuel Fox & Co.,
Stocksbridge )

The corrosion resistance of these steels is superior

to the ordinary structural steels,
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DR. V. G. PARANJPE (Tata Iron & Steel
Co. Ltd.)

I would like to ask Dr. Nijhawan the advantages
obtained by treating steels with mischmetal and
its relatiye. cost.

DR. B. R . NIJHAWAN ( Dy. Director , National
Metallurgical Laboratory )

With the additions of rare earths to high alloy

steels the yield increases by 6-15 per cent. In case

of 25 Ni - 20 per cent Cr steels the figure goes as

high as 10-15 per cent. Thus the cost of rare

earth additions is counterbalanced by the increase

in yield. I would like to refer to a paper by Evans

in the journal Iron and Steel in which he has

shown the improvement in the yield by minute

additions of cerium and utischmetal.

MR. E. H. BUCKNALL ( Director)

In the manufacture of a steel, such as Portiweld,

quite clearly ' know-how ' is an important factor.

The authors of the paper Molybdenum-boron

Steels can hardly be held responsible for difficulties

encountered while making experimental heats.

These may' be due to unfixed nitrogen.

The boron-effect has been attributed to soluble

boron which has a tendency to segregate at the
grain boundaries. But Mayer emphasized how

effective boron was on nucleation of acicular

ferrite near the nose of the S-curve, which is formed

in the body of the grains.

The morning's papers have shown that the

tonnage of heat-treatable boron steels being made is

falling. It seems possible that the high tensile type

will soon reverse the trend.

Against the Mo-Ti high-tensile steels being applied

in India is the belief that the Indian atmosphere

is generally usually corrosive despite B.I.S.R.A.

observations on the conditions applying to the

Delhi pillar. It does not seem to be accepted that

Aft) is beneficial, and some prejudice has been

caused by in early remark of Ilardgctt that Cu in
this class of steel is not useful.

In the case of the materials like high-speed steel

one can possibly take a leaf out of the book of the

cast iron metallurgists and cause the carbide forma-

tion to adopt the spherulitic forms. something of

that sort has been done in connection with silicon

in certain aluminium alloys. If this could be

achieved, I think it could represent the very im-

portant result, not only for high-speed steel but for

all the high carbide classes of material. If one has

the patience and manual dexterity to smith forge,

white cast iron can Icecome a very nice wrought

material, and a good too] steel. lint because of

the usual distribution of the carbide in the as-cast

material, the operation is very lahorioti andrequires

the greatest skill, If the distribution could be

modified so that one could get rid of the sharp

angularities. the operation would become nnnch

easier. This, of course, is a very pious wish, but

something which workers in that field should not

regard as a completely unattainable goal. An

alternative line of thought, with which Mr. Sewell

may be familiar, is to use the high-speed steels in

as-cast condition. During the war, quite a lot of

milling cutters were made by the lust wax process.

DR. B. R . NIJHAWAN ( Dy. Director , National

Metallurgical Laboratory )

In certain high-speed steels I observed diametrical

segregation of carbides irrespective of the size of

segregation persisted howeverthe ingot . This

much the section w;is reduced.

MR. S. ViSVANATIIAN (Tata Iron & Steel

Co. Ltd.)

If the forging temperature is low, the carbide

segregation is maximum. Once this occurs, this

cannot be removed.
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