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Abstract 

     This paper reveals the analytical structure of a fuzzy two-

term (PI/PD) controller which employs N1 (≥3) number of 

symmetric fuzzy sets for the input variable ‘displacement’, 

N2 (≥3) number of symmetric fuzzy sets for the input 

variable ‘velocity’ and N1+N2-1 number of symmetric fuzzy 

sets for the output variable ‘controller output’. The 

analytical structures are derived via triangular membership 

functions for fuzzification of the inputs and output variables, 

linear control rules, minimum triangular norm, algebraic 

sum triangular co-norm, different inference methods and 

center of sums (COS) defuzzification method and properties 

of such structures are investigated. Using the well-known 

small-gain theorem, bounded-input bounded-output (BIBO) 

stability analysis of feedback systems involving fuzzy PD 

controller as a subsystem is presented. Finally, a numerical 

example along with its simulation results is included to 

validate the effectiveness of the fuzzy two-term controller. 

1. Introduction  

 
As it appears from the literature, Mizumoto [2] has 

investigated fuzzy control problem by considering multi-

fuzzy sets and different fuzzy reasoning methods. It has 

been shown [4] that a fuzzy controller can be designed in 

such a manner that it is at least as good as the conventional 

PID controller which allows the plant under control to 

follow a specified behaviour. In [5], a fuzzy PI controller 

with triangular fuzzy numbers, Zadeh logic to evaluate 

linear control rules, and center of gravity defuzzifier has 

been considered. A closed form expression of the 

defuzzified output has been derived and shown it to be a 

nonlinear controller. Also, the nonlinearities of the fuzzy 

controller have been analyzed. Using an arbitrary number of 

inputs and an arbitrary number of triangular fuzzy sets to 

fuzzify every input variable, and probability AND operator 

and Lukasiewicz OR operator to formulate the fuzzy control 

rules, it has been shown [6] that the defuzzfied output of the 

controller becomes a linear parametric function of the 

controller inputs.  

   A multi-region fuzzy logic controller for nonlinear 

processes was proposed [7]. Based on apriori knowledge, 

the process to be controlled was divided into fuzzy regions 

such as high-gain, low-gain, large-time-constant, and small-

time-constant. Then a fuzzy controller was designed based 

on the regional information. A set of linguistic rules was 

formulated [8] in terms of their governing equations and 

asymptotic control laws were proposed for a small input 

error. Also, the effect of design factors like inference 

operators and number of partitions were studied. For a 

single input and single output (linear or nonlinear) system, it 

was shown [9] that one could construct a fuzzy logic 

controller equivalent to a given PI controller, and that a 

fuzzy logic controller designed with prescribed fuzzy logic 

operations was essentially a PI controller.  

   The input-output parametric relationship of a class of 

crisp-type fuzzy logic controllers using various t-norm sum-

gravity inference methods has been studied [11]. Using four 

most important t-norms, the matching level of each control 

rule has been calculated, and the explicit mathematical 

forms of reasoning surfaces have been obtained. The 

reasoning surfaces of these crisp-type fuzzy controllers have 

been proved to be composed of a 2-D multi-level relay and 

a local position-dependent nonlinear compensator with 

output pattern being influenced by the t-norm selected. 

   Input-output structures of fuzzy controllers with nonlinear 

input fuzzy sets, singleton output fuzzy sets, product AND 

operator, Mamdani type of fuzzy rules, and centroid 

defuzzifier were studied [13]. In addition, conditions for 

these structures to be equivalent to nonlinear PI/PD 

controllers with variable gains were provided. Recently, 

attempts have been made [14] to develop analytical 

structures for fuzzy PI/PD controllers with arbitrary 

trapezoidal input fuzzy sets having the property: the sum of 

two neighboring membership functions is not equal to unity. 

The analytical structures in [5, 6, 11, 13, 14] have been 

derived using either maximum or bounded sum triangular 

conorm.  

    It is evident from the literature survey that application 

of algebraic sum triangular co-norm for fuzzy two-term 

control is yet to be explored. Therefore, the main objectives 

of this paper are (i) to derive analytical structures of fuzzy 

two-term (PI/PD) controllers by employing minimum 

triangular norm, algebraic sum triangular co-norm, N1 

number of symmetric triangular membership functions on 

the input variable „displacement‟, N2 number of symmetric 

triangular membership functions on the input variable 

„velocity‟, N1+N2-1 number of symmetric triangular 

membership functions on output, linear control rules, 
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Mamdani minimum / Larsen product / drastic product 

inference method, and COS method of defuzzification, (ii) 

to investigate the properties of the controllers derived in (i), 

and (iii) to establish BIBO stability conditions for the 

feedback system containing the fuzzy PD controller as the 

subsystem. This paper is organized as follows: Section 2 

deals with scaling factors, fuzzification and defuzzification 

modules, control rule base, and inference engine; Section 3 

presents analytical structures of fuzzy PI controllers with 

symmetric triangular fuzzy sets; properties of fuzzy PI 

controllers with symmetric triangular fuzzy sets are 

discussed in Section 4; Section 5 shows that the analytical 

structures and their properties presented for fuzzy PI 

controllers also hold good for fuzzy PD controllers. BIBO 

stability analysis of fuzzy PD control systems is given in 

Section 6; Section 7 includes the results of simulation 

studies done on a linear second-order time delay system. 

The last section concludes the paper. 

 

2. Fuzzy PI /PD controller 

 
The principal structure of a fuzzy PI / PD controller is 

shown in Figure 1 which consists of the components such 

as scaling factors, fuzzification and defuzzification 

modules, rule base and inference engine. The incremental 

control signal (velocity algorithm) [3] generated by 

discrete-time PI controller is given by  

 
∆𝑢 𝑘𝑇 = 𝑢 𝑘𝑇 −  𝑢[ 𝑘 −  1 𝑇  

                                          = 𝐾𝑃
𝑑  𝑣 𝑘𝑇 +  𝐾𝐼

𝑑  𝑑(𝑘𝑇                    (1) 

 

while the control effort produced by discrete-time PD 

controller is given by 

   𝑢(𝑘𝑇)  = 𝐾𝑃
𝑑  𝑑(𝑘𝑇)  + 𝐾𝐷

𝑑𝑣(𝑘𝑇)                     (2) 

 

where 𝐾𝑃
𝑑 , 𝐾𝐼

𝑑 , and 𝐾𝐷
𝑑   are respectively the proportional, 

integral and derivative constants of discrete-time PI and 

PD controllers,  

              𝑑 𝑘𝑇 =  𝑒 𝑘𝑇 ,   the displacement                   (3) 

  

   and  𝑣 𝑘𝑇 =
 𝑑 𝑘𝑇 −𝑑  𝑘− 1 𝑇  

𝑇
,  the velocity                (4) 

 

𝑒(𝑘𝑇) is the error signal, 𝑇 is the sampling period. Based 

on (1), (2) and (4), the principal structures of fuzzy PI 

controller and fuzzy PD controller are shown in Figure 1, 

in which 𝑁𝑑 , 𝑁𝑣 , 𝑁∆𝑢
−1 and 𝑁𝑢

−1 represent scaling factors of 

the fuzzy controllers, and 𝑑𝑁(𝑘𝑇), 𝑣𝑁(𝑘𝑇), ∆𝑢𝑁(𝑘𝑇) and 

𝑢𝑁(𝑘𝑇) represent normalized versions of 𝑑(𝑘𝑇), 𝑣(𝑘𝑇), 

∆𝑢(𝑘𝑇) and 𝑢(𝑘𝑇), respectively. 

 

2.1.  Scaling factors 

The use of normalized universes of discourse requires a 

scale transformation which maps the physical values of the 

process state variables (in the present situation 𝑑(𝑘𝑇) and 

𝑣(𝑘𝑇)) into a normalized domain. This is called input 

normalization. Furthermore, output denormalization maps 

the normalized value of the output variable (here ∆𝑢𝑁(𝑘𝑇) 

or 𝑢𝑁(𝑘𝑇)) into its physical domain. The scaling factors 

which describe the inputs normalization (𝑁𝑑  and 𝑁𝑣) and 

output denormalization (𝑁∆𝑢
−1 or 𝑁𝑢

−1) play a role similar to 

that of the gain co-efficients (𝐾𝑃
𝑑 , 𝐾𝐼

𝑑 , and 𝐾𝐷
𝑑 ) in 

conventional controllers. 

 

Figure 1. Block diagram fuzzy PI/PD control system 

2.2. Fuzzification module  

It converts instantaneous value of a process state variable 

into a linguistic value with the help of represented fuzzy 

set. The parametric functional description of the triangular 

shaped membership function is the most economic one and 

hence it is considered here. Let the number of fuzzy sets, 𝑁 

on scaled input variables “displacement 𝑑𝑁(𝑘𝑇)” and 

“velocity 𝑣𝑁(𝑘𝑇)” be the same, and the membership 

functions be identical. Assume that there are J number of 

fuzzy sets on negative displacement (velocity), one fuzzy 

set for zero displacement (velocity), and 𝐽 number of fuzzy 

sets on positive displacement (velocity). Therefore, there is 

a total of 

  𝑁 = 2𝐽 + 1 ≥ 3                         (5) 

number of fuzzy sets on each input variable as shown 

below:   

{𝑋−𝐽 , 𝑋− 𝐽−1 , ⋯ , 𝑋−1 , 𝑋0, 𝑋1, ⋯ , 𝑋𝑝 , ⋯ , 𝑋(𝐽−1), 𝑋𝐽 }       (6) 

where 𝑋 is 𝐷 (for displacement) or 𝑉(for velocity). The 

membership functions corresponding to members in (6) are 

considered as 

{𝜇−𝐽  𝑥𝑁 , 𝜇− 𝐽−1  𝑥𝑁 , ⋯ , 𝜇−1 𝑥𝑁 , 𝜇0 𝑥𝑁 , 

𝜇1(𝑥𝑁), ⋯ , 𝜇𝑝(𝑥𝑁), ⋯ , 𝜇 𝐽−1  𝑥𝑁 , 𝜇𝐽 (𝑥𝑁)}                (7) 

where 𝑥𝑁  is 𝑑𝑁  (with p = i) or 𝑣𝑁  (with p = j). Let the 

central value of membership function 𝜇𝑝 𝑥𝑁   be 𝜆𝑝 , and 

define  𝜆−𝐽 = −𝑙¸ 𝜆0 = 0 and   𝜆𝐽 = 𝑙. Also, let the space S 

between central values of two adjacent members be equal. 

Then S is given by 

   S = 
𝑙

𝐽
                                                   (8) 

Consequently, the central value  𝜆𝑝   becomes  𝜆𝑝= p . S. 

Note that the base of each member is 2S. The membership 

function 𝜇𝑝 𝑥𝑁   is defined as follows: 
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Figure 2.  Membership functions for input 𝒙𝑵 

 

Figure 3. Output membership functions

For 𝑝 = − 𝐽 − 1 , − 𝐽 − 2 , ⋯ ,  𝐽 − 2 , and  𝐽 − 1  

𝜇𝑖 𝑥𝑁 =

 
 
 

 
 

0 ,                        𝑥𝑁 ≤ (𝑝 − 1)𝑆
1

𝑆
{𝑥𝑁 − (𝑝 − 1)𝑆} ,  (𝑝 − 1)𝑆 ≤ 𝑥𝑁 ≤ 𝑝𝑆

  
−1

𝑆
 𝑥𝑁 −  𝑝 + 1 𝑆  ,    𝑝𝑆 ≤ 𝑥𝑁 ≤ (𝑝 + 1)𝑆   

 0 ,                     (𝑝 + 1)𝑆 ≤ 𝑥𝑁

      

       (9) 

For 𝑝 = −𝐽 

 𝜇−𝐽  𝑥𝑁 =

 
 
 

 
 

  0 ,                                𝑥𝑁 ≤ −𝐿
    1,                     −𝐿 ≤ 𝑥𝑁 ≤ −𝐽𝑆

−1

𝑆
 𝑥𝑁 −  −𝐽 + 1 𝑆 , −𝐽𝑆 ≤ 𝑥𝑁 ≤  −𝐽 + 1 𝑆

  0 ,                       (−𝐽 + 1)𝑆 ≤ 𝑥𝑁

      

   (10) 

 For 𝑝 = 𝐽 

   𝜇𝐽  𝑥𝑁 =

 
 
 

 
         0 ,                       𝑥𝑁 ≤ (𝐽 − 1)𝑆

   
1

𝑆
{𝑥𝑁 − (𝐽 − 1)𝑆} ,  (𝐽 − 1)𝑆 ≤ 𝑥𝑁 ≤ 𝐽𝑆

     1,                       𝐽𝑆 ≤ 𝑥𝑁 ≤  𝐿
   0 ,                               𝐿 ≤ 𝑥𝑁

       (11) 

Notice that 

             𝜇𝑝 𝑥𝑁 + 𝜇𝑝+1 𝑥𝑁 = 1,      𝑥𝑁  𝜖 [−𝐿, 𝐿]          (12) 

 

                          𝑖 + 𝑗 = 𝑚                                          (13) 

 Figure 2 shows membership function 𝜇𝑝 𝑥𝑁   

corresponding to the input fuzzy set 𝑋𝑝  in (6). Let 𝑥𝑁  be 

the crisp input. Then from Figure 2 the fuzzified version of 

𝑥𝑁  is its degree of membership 𝜇𝑝 𝑥𝑁  . Assume that there 

are 2N − 1 (i.e. 4J+1) number of fuzzy sets on the 

normalized output variable ∆𝑢𝑁 𝑘𝑇  for PI and 𝑢𝑁 𝑘𝑇   
for PD). Among these, 2J members are on negative output, 

one member for zero output, and 2J members are on 

positive output. The membership functions for normalized 

output, shown in Figure 3, are denoted by 

   𝑂−𝐽 , 𝑂−(𝐽−1), ⋯ , 𝑂−1 , 𝑂0 , 𝑂1 , ⋯ , 𝑂𝑚 , ⋯ , 𝑂(𝐽−1), 𝑂𝐽     (14) 

 

Let the central value of member 𝑂𝑚  be 𝛾𝑚  and define 𝛾−2𝐽  

=-H, 𝛾0 = 0, and 𝛾2𝐽 = H.  Further, let the space W between 

the central values of two adjacent members be equal. Then 

                     W = 
𝐻

2𝐽
 = 

𝐻

𝑁−1
                                        (15) 

and       𝛾𝑚 = 𝑚. 𝑊 =
𝑚𝐻

𝑁−1
                                (16)  

 2.3. Control rule base 

 

The following linear control rules are considered for fuzzy 

PI controllers: 

 

R1) If 𝑑𝑁  is 𝐷𝑖+1 AND 𝑣𝑁   is 𝑉𝑗  then ∆𝑢𝑁  is 𝑂𝑚+1. 

R2) If 𝑑𝑁  is 𝐷𝑖  AND 𝑣𝑁   is 𝑉𝑗  then ∆𝑢𝑁  is 𝑂𝑚 .  

R3) If 𝑑𝑁  is 𝐷𝑖  AND 𝑣𝑁   is 𝑉𝑗 +1 then ∆𝑢𝑁  is 𝑂𝑚+1. 

R4) If 𝑑𝑁  is 𝐷𝑖+1 AND 𝑣𝑁   is 𝑉𝑗+1  then ∆𝑢𝑁  is 𝑂𝑚+2. 

The above control rules also hold good for fuzzy PD 

controller if ∆𝑢𝑁   is replaced by 𝑢𝑁 . The AND operation 

considered in the rule base is minimum triangular norm, 

which is defined as:    

           

𝜇 𝑚𝑖𝑛 (𝑑𝑁 , 𝑣𝑁)  =  min(𝜇𝑎 𝑑𝑁 , 𝜇𝑏(𝑣𝑁))                         (17) 

 
where 𝑎 𝜖 {𝐷𝑖 , 𝐷𝑖+1} and 𝑏 𝜖 {𝑉𝑗 , 𝑉𝑗+1} are the 𝑎𝑡ℎ  and 

  𝑏𝑡ℎ  fuzzy sets on 𝑑𝑁  and 𝑣𝑁  respectively.  
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Table 1. Inference methods 

 
Inference Method Definition Area of inferred output 

fuzzy set 𝐀(𝛍 ) 

Mamdani Minimum, RMM min(𝜇 ,𝜇(𝑜𝑢𝑡𝑝𝑢𝑡)) 𝜇 W(2-𝜇 ) 

Larsen Product, RLP 𝜇 .𝜇(𝑜𝑢𝑡𝑝𝑢𝑡) 𝜇 W 

Drastic Product, RDP Case 1: 𝜇 ,      if 𝜇 𝑜𝑢𝑡𝑝𝑢𝑡 = 1 

Case 2: 𝜇 𝑜𝑢𝑡𝑝𝑢𝑡        if  𝜇 = 1 

Case 3: 0      if 𝜇 ,𝜇 𝑜𝑢𝑡𝑝𝑢𝑡 >0 

                           − 

                           𝑊 
                          0 

 

Figure 4. Illustration of inference methods 

  

Figure 5. Possible input combinations of 𝒅𝑵(𝒌𝑻) 

and  𝒗𝑵(𝒌𝑻) (a) in the region: 𝒊𝑺 ≤ 𝒅𝑵  𝒌𝑻 ≤ (𝒊 + 𝟏)𝑺  

and   𝒋𝑺 ≤ 𝒗𝑵  𝒌𝑻 ≤ (𝒋 + 𝟏)𝑺 (b) outside the region: 

𝒊𝑺 ≤ 𝒅𝑵  𝒌𝑻 ≤ (𝒊 + 𝟏)𝑺   and   𝒋𝑺 ≤ 𝒗𝑵  𝒌𝑻 ≤ (𝒋 +
𝟏)𝑺  

2.4.  Inference engine 

 

The degree of match between the crisp input and the fuzzy 

sets describing the meaning of the rule-antecedent is 

computed for each rule using minimum triangular norm 

defined in (17). Then the degree of match is used to 

determine the inferred output fuzzy set via any of the fuzzy 

inference methods defined in Table 1, and graphically 

illustrated in Figure 4.  

  There are four possible input combinations (ICs), see 

Figure 5(a), of the normalized inputs 𝑑𝑁(𝑘𝑇) and  𝑣𝑁(𝑘𝑇) 

in the region defined by   𝑖𝑆 ≤ 𝑑𝑁   𝑘𝑇 ≤ (𝑖 + 1)𝑆   and   

𝑗𝑆 ≤ 𝑣𝑁   𝑘𝑇 ≤ (𝑗 + 1)𝑆. Similarly there are eight 

possible input combinations of the normalized inputs in the 

region shown in Figure 5(b).  

  The control rules in Section 2.3 are used to evaluate 

appropriate control law in each IC region. The outcomes of 

the control rules for all the IC regions with minimum 

triangular norm are listed in Table 2. It may be noticed 

from the control rule base that the control rules R1 and R3 

fire the same output fuzzy set Om+1, and produce two 

membership functions 𝜇 1(𝑜𝑢𝑡𝑝𝑢𝑡) and 𝜇 3(𝑜𝑢𝑡𝑝𝑢𝑡). To 

take care of the OR operation between rule 1 and rule 3, 

algebraic sum triangular co-norm is used, which is defined 

as follows:    

                   𝜇 1/3= 𝜇 1 + 𝜇 3 -𝜇 1 𝜇 3                        (18) 

 

2.5.  Defuzzification 

 

The well-known COS method of defuzzification is used to 

obtain the crisp controller output which is defined [10] as 

 

∆𝑢𝑁 𝑘𝑇 =
𝐴 𝜇 1 ℎ1+𝐴 𝜇 2 ℎ2+𝐴 𝜇 3 ℎ3+𝐴 𝜇 4 ℎ4

𝐴 𝜇 1 +𝐴 𝜇 2 +𝐴 𝜇 3 +𝐴 𝜇 4 
                  (19) 

 

where ℎ𝑖 , 𝑖=1, 2, 3 and 4 is the centroid of inferred output 

fuzzy set corresponding to the 𝑖th
 rule. ∆𝑢𝑁 𝑘𝑇  is replaced 

by 𝑢𝑁 𝑘𝑇  for fuzzy PD controller. From the control rule 

base, it can be seen that the output fuzzy set, Om+1 is fired 

two times (see rules R1 and R3). In such a situation, using 
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algebraic sum triangular co-norm defined in (18), (19) can 

be written as 

 

      ∆𝑢𝑁 𝑘𝑇 =
𝐴 𝜇 2 ℎ2+𝐴 𝜇 1/3 ℎ1/3+𝐴 𝜇 4 ℎ4

𝐴 𝜇 2 +𝐴 𝜇 1/3 +𝐴 𝜇 4 
                   (20) 

where 𝜇 1/3 is the outcome of triangular co-norm and h is 

the centroid of the inferred output fuzzy set shown (with 

hatching) in Figure 4.  

Since, the output fuzzy sets are symmetrical about their 

central values 𝛾m‟s, the global centroid can be calculated 

from the local centroids. The inferred area of respective 

output fuzzy set weighs the importance of each local 

centroid in the global centroid. Considering each of the 

local centroids shown in Figure 6, (20) can be written as 

 

∆𝑢 𝑘𝑇 =  
1

𝑁∆𝑢
 

𝐴 𝜇 2  𝑚𝑊 +𝐴 𝜇 1/3  𝑚+1 𝑊+𝐴 𝜇 4  𝑚+2 𝑊

𝐴 𝜇 2 +𝐴 𝜇 1/3 +𝐴 𝜇 4 
        

           =  
1

𝑁∆𝑢
 

𝐴 𝜇 2  𝑖+𝑗  𝑊+𝐴 𝜇 1/3  𝑖+𝑗 +1 𝑊+𝐴 𝜇 4 (𝑖+𝑗 +2)𝑊

𝐴 𝜇 2 +𝐴 𝜇 1/3 +𝐴 𝜇 4 
   (21) 

 

 

Table 2. Outcomes of rules in IC regions 

 
 

 

 
 

Figure 6. Center of sums defuzzification method (for 

RLP inference method) 

3.  Analytical structures of the fuzzy PI 

controllers with symmetric triangular 

 fuzzy sets 
 

Here analytical structures of three classes of fuzzy PI 

controllers with multiple symmetric fuzzy sets are 

presented. The expression in  (21) can be written as 

           

       ∆𝑢 𝑘𝑇 =
(𝑖+𝑗 +1)𝑊

𝑁∆𝑢
+  

𝑊

𝑁∆𝑢
 

𝐴 𝜇 4 −𝐴 𝜇 2 

𝐴 𝜇 2 +𝐴 𝜇 1/3 +𝐴 𝜇 4 
              

           =∆𝑢𝑔 + ∆𝑢𝑙                                   (22) 

     where               ∆𝑢𝑔 =
(𝑖+𝑗 +1)𝑊

𝑁∆𝑢
                                  (23) 

     and       ∆𝑢𝑙 =  
𝑊

𝑁∆𝑢
 

𝐴 𝜇 4 −𝐴 𝜇 2 

𝐴 𝜇 2 +𝐴 𝜇 1/3 +𝐴 𝜇 4 
                    (24) 

For simplicity we define 

               𝑧1 𝑘 =  𝑑𝑁 𝑘 − (𝑖 +  0.5)𝑆             (25) 
        𝑧2 𝑘 =  𝑣𝑁 𝑘 −  𝑗 +  0.5 𝑆           (26) 

 
and show 𝑘𝑇 as 𝑘 in the sequel. The analytical structures 

of different classes of fuzzy PI controllers follow now. 

 

3.1. Analytical structures in the regions IC1 - IC4 

 
Class I: Triangular norm: minimum, triangular co-norm:  

algebraic sum, inference method: Mamdani minimum. 

 

∆𝑢𝑙(𝑘) =  
𝑊

𝑁∆𝑢
 

 𝑆+ 𝑧1 𝑘 −𝑧2 𝑘   (𝑧1 𝑘 +𝑧2 𝑘 )

3𝑆2−2𝑆 𝑧 𝑘  −2 𝑧1
2 𝑘 +𝑧2

2 𝑘  −
𝑊

𝑆2(0.5625𝑆4

−0.75𝑆3 𝑧1 𝑘 +𝑧2 𝑘  −0.75𝑆2(𝑧1
2 𝑘 +𝑧2

2(𝑘))

+𝑆2𝑧1 𝑘 𝑧2 𝑘 +𝑆𝑧1 𝑘 𝑧2 𝑘  𝑧1 𝑘 +𝑧2 𝑘  

+𝑧1
2 𝑘 𝑧2

2(𝑘))                                                           

   (27) 

where 𝑧(𝑘) is defined in Table 3.  

 

Class II: Triangular norm: minimum, triangular co-norm: 

algebraic sum, inference method:  Larsen product. 

 

  ∆𝑢𝑙 𝑘 =  
𝑊

𝑁∆𝑢
 

𝑧1 𝑘 +𝑧2 𝑘 

2𝑆−2 𝑧 𝑘  −
𝑊

𝑆
(0.25𝑆2−0.5𝑆 𝑧1 𝑘 +𝑧2 𝑘  

 +𝑧1 𝑘 𝑧2 𝑘  

      (28) 

 where 𝑧(𝑘) is defined in Table 3. 

 

Class III: Triangular norm: minimum, triangular co-norm: 

algebraic sum, inference method: drastic product. 

 

  ∆𝑢𝑙(𝑘) =  
𝑊

𝑁∆𝑢
 

𝑧1 𝑘 +𝑧2 𝑘 

2𝑆−2 𝑧 𝑘  −
1

𝑆
(0.25𝑆2−0.5𝑆 𝑧1 𝑘 +𝑧2 𝑘  

+𝑧1 𝑘 𝑧2 𝑘 )

      (29) 

 where 𝑧(𝑘) is defined in Table 3. 

 

Table 3. Attributes of 𝒛 𝒌  
𝒛(𝒌) 𝑰𝑪𝒔 

𝑧1(𝑘) 

𝑧2(𝑘) 

𝐼𝐶1 , 𝐼𝐶3 

𝐼𝐶2 , 𝐼𝐶4 

 

For all classes, ∆𝑢𝑔  in regions IC1- IC4 is given by (23). 
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3.2.   Analytical structures in the regions IC5 – IC8 

 

Class I, class II and class III: 

∆𝑢𝑔 = 
 𝐽+𝑗  𝑊 

𝑁∆𝑢
       in the region IC5                                (30)  

∆𝑢𝑔 = 
 𝑖−𝐽+1 𝑊 

𝑁∆𝑢
       in the region IC6                              (31) 

∆𝑢𝑔 = 
 −𝐽+𝑗+1 𝑊 

𝑁∆𝑢
      in the region IC7                            (32) 

∆𝑢𝑔 = 
 𝑖+𝐽 𝑊 

𝑁∆𝑢
       in the region IC8                                 (33) 

 

Class I: 

  ∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

𝑆𝑧2 𝑘 

0.75𝑆2−𝑧2
2 𝑘 

+ 1     in the region IC5    (34) 

∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

𝑆𝑧1 𝑘 

0.75𝑆2−𝑧1
2 𝑘 

− 1     in the region IC6      (35)  

∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

𝑆𝑧2 𝑘 

0.75𝑆2−𝑧2
2 𝑘 

− 1     in the region IC7      (36)    

   ∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

𝑆𝑧1 𝑘 

0.75𝑆2−𝑧1
2 𝑘 

+ 1     in the region IC8   (37) 

 

Class II and class III: 

∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

2𝑧2 𝑘 

𝑆
+ 1     in the region IC5               (38) 

  ∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

2𝑧1 𝑘 

𝑆
− 1     in the region IC6                    (39) 

   ∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

2𝑧2 𝑘 

𝑆
− 1     in the region IC7            (40)     

   ∆𝑢𝑙(𝑘) = 
𝑊

2𝑁∆𝑢
 

2𝑧1 𝑘 

𝑆
+ 1     in the region IC8            (41) 

3.3.  Analytical structures in the regions IC9  - IC12 

 

Class I, class II and class III: 

 

∆𝑢(𝑘) = 0    in the region IC9  and  IC11                      (42) 

 

∆𝑢(𝑘) = 
−𝐻

𝑁∆𝑢
    in the region IC10                                   (43) 

∆𝑢(𝑘) = 
𝐻

𝑁∆𝑢
    in the region IC12                                    (44) 

 

4.  Properties of fuzzy PI controllers with 

symmetric triangular fuzzy sets 
 

In (22) ∆𝑢𝑔  represents the global two-dimensional multi-

level relay and ∆𝑢𝑙(𝑘) represents the local nonlinear PI 

controller. In order to examine the roles of global 

multilevel relay and local nonlinear PI controller in total 

control action, and the degree of nonlinearity of fuzzy 

controller as N changes, we define a constant 𝜂 as 

𝜂 =
 ∆𝑢 𝑙 𝑚𝑎𝑥

 ∆𝑢𝑔  
𝑚𝑎𝑥

+ ∆𝑢 𝑙 𝑚𝑎𝑥
                                              (45) 

 

It can be seen from  (45) that (i) as 𝑁 ≥ 3, for 𝑁 =  3 the 

value of η is 50% which implies that the global multilevel 

relay and the local nonlinear PI controller play equal role 

in total control action, and (ii) as N becomes larger, 𝜂 

approaches a smaller value which makes the resolution of 

global multi-level relay output finer and the fuzzy 

controller less nonlinear. Moreover, the global multi-level 

relay has a stronger role than the local nonlinear PI 

controller, in the total control action. 

In view of the above analytical structures and their 

properties we have 

 

Theorem 1: The structure of the fuzzy PI controller with 

linear control rules is the sum of a global two-

dimensional multi-level relay and a local nonlinear PI 

controller. 

 

5. Analytical structures of fuzzy PD 

controllers 
 

Since it is clear from Figure 1 that 𝑑(𝑘𝑇) and 𝑣(𝑘𝑇) are 

always the inputs to the two-term (PI or PD) controller and 

∆𝑢(𝑘𝑇) is the incremental output of the PI controller 

(velocity algorithm) while 𝑢(𝑘𝑇) is the output of the PD 

controller, the analytical structures for fuzzy PI controllers 

in Section 3 are equally applicable to even fuzzy PD 

controllers provided we replace ∆𝑢(𝑘𝑇) by 𝑢(𝑘𝑇), 𝑁∆𝑢
−1 by 

𝑁𝑢
−1 and set 𝑢[(𝑘 −  1)𝑇] equal to zero. Also, the 

properties of different classes of fuzzy PI controllers in 

Section 4 hold good for fuzzy PD controllers. 

 

6.  BIBO stability analysis of feedback systems 

that contain fuzzy PD controllers 
 

We make use of the well-known small-gain theorem in [1] 

to derive sufficient conditions for BIBO stability of 

feedback systems which contain one of the fuzzy PD 

controllers in Section 3 as a subsystem. The sufficient 

condition for fuzzy PD control system to be BIBO stable 

can be stated as follows. 

 

Figure 7.  Block diagram of a typical fuzzy PD control 

system 

Theorem 2: The system of Figure 7 is BIBO stable if (i) 

the given nonlinear process 𝑁2  has a bounded norm i.e., 
 𝑁2  < ∞ where  .   denotes the norm of nonlinear 

mapping, and (ii) the parameters 𝑆, 𝑊, 𝑇, 𝑁𝑑 , 𝑁𝑣  and 𝑁𝑢  of 

fuzzy PD controller satisfy the inequality  

 
𝑊× 𝑇×𝑁𝑑 +𝑁𝑣 

𝑆×𝑇×𝑁𝑢
 𝑁2 < 1                                       (46) 

 

This theorem is applicable to all the three classes of control 

systems. 
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7. Validation of fuzzy PD controller 
 

Comparison of the performances of linear PD controller 

and the fuzzy PD controller with symmetric input and 

output fuzzy sets is done here by considering the following 

example 

A linear second-order time-delay system 

𝐺𝑝 𝑠 =
𝑒−3𝑠

(100𝑠 + 1)2
                                (47) 

 

with a unit setpoint. In (47), 𝐺𝑝 𝑠  represent the transfer 

function of the plant to be controlled. To implement the 

mathematical model of fuzzy PD controller, the design 

parameters are to be appropriately chosen. For this, the 

design procedure in [12] is followed here to design the 

fuzzy PD controller. For the above process, the values of 

sampling period T=0.1sec, proportional gain 𝐾𝑃
𝑑 = 6.0, 

derivative gain 𝐾𝐷
𝑑 = 2.5, maximum absolute displacement 

(error)  𝑑 𝑚𝑎𝑥 = 1  and maximum absolute 

velocity  𝑣 𝑚𝑎𝑥 = 0.0151. Since the control performance 

with the calculated design parameters is not found to be 

satisfactory, the parameters of the fuzzy controller are then 

fine tuned on trial and error basis to attain acceptable 

performance. The parameters 𝑁, 𝑁𝑑 , 𝑁𝑣 , 𝑁𝑢 , 𝑙 and 𝐻 of the 

fuzzy controllers are listed in Table 4. 

The unit step responses obtained with different classes of 

fuzzy PD controllers for the plant 𝐺𝑝 𝑠  are shown in 

Figure 8. These figures also show the corresponding 

responses with the conventional PD controllers. From the 

plots it is apparent that the fuzzy PD controllers 

outperform the conventional PD controllers for different 

values of  N. The basic objective of this simulation study is 

to demonstrate the influence of the parameter 𝑁 on the 

performance of the fuzzy controller. Therefore, for 

different classes of fuzzy PD controllers other functional 

parameters are fixed and only 𝑁 is varied as shown in 

Table 4.  

From the time-domain performance data in Table 4 it is 

observed that for class I and class III fuzzy PD controllers, 

by increasing the value of 𝑁 improved performance is 

obtained with drastic fall in the value of percent peak 

overshoot (%𝑀𝑝) and slight variation in the values of rise 

time (𝑡𝑟 ) and settling time (𝑡𝑠).  

 

8. Conclusions  
 

In this paper, analytical structures for different classes of 

fuzzy PI/PD controllers with multiple fuzzy sets have been 

considered. Using 𝑁1 number of symmetric triangular 

membership functions on the input variable 

„displacement‟, 𝑁2 number of symmetric triangular 

membership functions on the input variable „velocity‟, 

𝑁1+𝑁2 − 1 number of symmetric triangular fuzzy sets for 

the output variable, linear control rules, minimum 

triangular norm, algebraic sum triangular co-norm, three 

different inference methods (RMM, RLP, and RDP) and COS 

defuzzification, expressions for control laws of fuzzy 

PI/PD controllers have been derived. It has been shown 

that each resulting controller is equivalent to the sum of a 

global two- dimensional multilevel relay and a local 

nonlinear PI/PD controller.  

Upon carefully investigating the properties of the fuzzy 

controllers, it has been found that all the three classes of 

fuzzy controllers exhibit desirable control properties. 

Using the small-gain theorem, BIBO stability conditions 

are established considering any class of the controller as a 

fuzzy PD controller. The superiority of fuzzy PD controller 

over the linear PD controller has been demonstrated 

through a simulation study on a linear second-order time-

delay system. 

 

  

Table 4. Attributes and time-domain performance data of plants with conventional and fuzzy PD controllers 

Plant Controller Class 𝑵𝒅 𝑵𝒗 𝑵𝒖 𝒍 𝑯 𝑵 𝑴𝒑 

(%) 

𝒕𝒓 

(sec) 

𝒕𝒔 

(sec) 

 

 

 

 

𝐺𝑝(𝑠) 

Linear PD - - - - - - - 27.94 59.1365 - 

 

 

 

 

Fuzzy PD 

I 

I 

I 

2.4 

2.4 

2.4 

34.0 

34.0 

34.0 

0.022 

0.022 

0.022 

2.4 

2.4 

2.4 

4.0 

4.0 

4.0 

3 

5 

7 

3.1833 

2.4623 

2.2740 

14.3 

16.2 

15.2 

20.4 

22.4 

21.4 

II 

II 

II 

2.56 

2.56 

2.56 

26.0 

26.0 

26.0 

0.0085 

0.0085 

0.0085 

3.2 

3.2 

3.2 

4.0 

4.0 

4.0 

3 

5 

7 

6.9945 

2.3737 

2.4792 

10.0 

10.0 

10.0 

15.0 

15.1 

14.9 

III 

III 

III 

2.21 

2.21 

2.21 

24.0 

24.0 

24.0 

0.006 

0.006 

0.006 

3.0 

3.0 

3.0 

3.0 

3.0 

3.0 

3 

5 

7 

4.655 

0.0020 

0.0001 

11.0 

11.0 

11.0 

16.0 

17.0 

17.0 
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Figure 8. Unit step response of the closed loop system with plant 𝑮𝒑 𝒔  and (a) Class I  

                                                  (b) Class II(c) Class III fuzzy PD controller 
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