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Introduction

Corrosion is a significant prob-

lem facing all industries including

the electric power industry. Besides

being costly, corrosion can have

other important consequences on

power plant operations. Corrosion

damage can result in costly replace-

ments to equipment. Severe corro-

sion problems can cause forced shut
downs and these forced shut downs

cannot be tolerated.(') Corrosion

would also cause overall loss in

power plant efficiency which de-

pends upon smooth and uninter-

rupted functioning of the boiler unit

along with other units. The frequent

tube failure in boilers is a threat to

power generation and is to be com-

bated and overcome. (2)

During operation, a wide variety

of deposits can form on both sides of

heat transfer surfaces. These depos-

its can cause aqueous corrosion on

the waterside and high temperature

corrosion on the fire side. On the

water side the reaction between wa-

ter, deposits and the pipe material

gets accelerated due to high tem-

perature and if the inclusions are

present in the pipe material they may

provide the preferable areas of at-

tack due to formation of anodic and

cathodic sites leading to pitting type
corrosion which is more dangerous

than the uniform corrosion.

The deposits on water side may

also act as insulator thereby lead-

ing to generation of hot spots where

the dry as well as salt corrosion

will be accelerated due to genera-

tion of high temperatures.

On fireside, there can be attack
by fly ash, salt deposits, flue gases
containing sulphur on the plate ma-
terial. Na2SO4, NaCl, V205 and
other compounds are formed by
reaction between the various ele-
ments present in the environment.
Na2SO4 itself is not very aggres-
sive at the temperatures at which
boilers are run, where as, the pres-
ence of small amount of chloride
of V205 forms a low temperature
eutectic. In the external corrosion
and occurrence of deposits, the fac-
tors involved are the temperature
of the metal and the flue gas stream,
the composition of the substances
in contact with the material sur-
face and the particle size of the
deposited material. High tempera-
ture corrosion by flue gases can
occur in a variety of forms at many
locations of the boilers like
furnace wall tubes, superheaters,

D-1



S.N. TIWARI, R.N. SHARMA AND S. PRAKASH

reheaters economisers where ever

gas temperature is more than 500°C.

In many cases these deposits con-

tain sulphates of Na, Mg, Ca and

V2O5, etc., depending upon the type

of fuel used.(') These deposits

modified high temperature corro-

sion in fire side of boiler is fre-

quently called hot corrosion. (5)

Many research papers describe

the mechanism by which the hot cor-

rosion of boiler tubes occurs. There

is no complete agreement between

investigators on the details of the

hot corrosion process but the gen-

eral features are more or less ac-

cepted. For example, hot corrosion

can be divided into initiation and

propogation stages. The liquid na-

ture of the deposit transports the

reactants in the corrosion reaction

as well as it affects the oxide scales

development on the surface. The

reaction between scale and the de-

posit may be acidic or basic. More

work is required to understand the

mechanism by which the degrada-

tion of alloys occurs.(')

This degradation of alloys can be

minimised by using recently devel-

oped materials like Fe, Ni and Co

base superalloys with suitable addi-

tives and incorporating rare/reactive

metals in the alloy by resisting high

temperatures, stresses and corrosion

in aggressive environments.

Occurrence of Corrosion

Corrosion from combustion gases
occurs in a variety of form and in
many locations in boilers. Gener-
ally corrosion of furnace wall tube,

superheaters and economisers is a

high temperature hot corrosion as

the temperature in the these parts is

more than 500°C. Where the

temperature is less than 500°C, as

with air heaters and in stacks, metal

loss occurs by low temperature hot

corrosion.(4)

In the lower part of the boiler at

the grate, the temperature is more

than 1000°C with free burning coal

up to about 900°C, coal ash acts as a

solid and is chemically inert. The

iron pyrite, FeS2 is about half the

sulphur in the coal. They dissoci-

ate to form FeS. This FeS, in turn

can lead to rapid corrosion of iron

at quite moderate temperatures.

The important point is that the iron

can react with FeS to form an eu-

tectic melting at bout 900°C, and

FeO and FeS eutectic melts at

850°C. Both of these eutectics are

liquids in the range of metal tem-

peratures of grate bars and of

tuyeres with blocked airflow and

free burning fuel beds. t7)

Deposits on the surfaces of

boiler and superheater tubes are

very common. Such deposits often

collect on the alkali matrix base by

volatilisation of Na and K in the

flame, condense on relatively cool

tube surfaces and react with SO2

and O2 or with SO3 to form sticky

surface. Usually this matrix base

contains alkali sulphates and is

largely soluble in water. This

matrix base provides the surface

to which particles of ash suspended

in the flue gas can get bonded

to form an adherent deposit

commonly known as Soot.(')
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Phosphate - type deposit occures
when coal is burned in fuel beds.
Phosphorous compounds in coal
such as CaF2.3Ca3P2O8 lose flourine
at relatively low temperatures but
resulting calcium phosphate is stable
in air even up to 16000C (4)

Corrosion of Wall Tubes

The surface deposits mainly con-

sist of Fe2O3, Na2O, K2O, SiO21

A12O3, CaO, MgO and others. This

deposit has two layers, the outer

layer is at high temperature and is

moving whereas the inner layer is

stationary and is at low tempera-

ture.(4)

Corrosion of Superheater Tubes

Corrosion of superheater and

reheater tubes is a serious probelm.

This corrosion remains as a major

difficulty in the operation of coal

and oil fired boilers. At lower tem-

peratures, the compounds are solids

and non reactive but at temperatures

above 600°C, the compounds melt

and cause rapid loss of metal.
Alexander et. al.(9) show that the
deposits on the tubes were mainly

Na2SO4, even though the fuel oil

being burned contained less than
20 ppm Na2O. There is a great

importance of temperature in the
corrosion of superheaters. When

steam temperature is up to 500°C, no

corrosion occurs but at temperatures

of steam above this, excessive

corrosion occurs.

types: (1) Sintered and Fused, (2)
Alkali Matrix, and (3) Phosphatic.
Sintered and fused deposits consist
essentially of coal ash carried by the
flue gas in the fom of small par-
ticles. They form slag deposits and
they produce "birdnest" on super-
heater and reheater surfaces. Coal
ash made up of complex mixture of
silicates, alumina , iron oxide, lime,
mangesia and alkalies is relatively
inert below 900°C. However, even
at temperatures down to about 600°C,
sintering can occur , binding loose
ash particles into a moderately strong
mass. Alkali matrix deposits form
largely because alkali sulphates,
such as Na2SO4 , are present in the
mass of fly ash collected on a tube
surface. If alkali sulphates occur in
any reasonably high proportions,
they can serve as the bonding mate-
rial for the remainder of the ash at
temperatures as low as 750°C, that
is, the minimum melting point of
Na2SO4-K2SO4 system. Phosphatic
deposits are bonded like alkali-
matrix type, but the bonding agent is
phosphorous compound rather than
a sulphate. Phosphatic deposits
seldom occur in pulverized-coal-
fired boilers. (4, 10)

Air Heaters

Oxidation of metal components
by flue gas at air heater tempera-
tures is significant , but the presence
of a liquid film of H2SO4 can cause
a catastrophic corrosion failure.0'

Oilfired Furnaces

This deposit of superheater tubes
may be classified into three main

The nature of the ash in fuel oil in
its quantity and composition, leads
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to problems in corrosion and depos-

its generally unlike those caused by

the ash in solid fuels. The ash con-

tent is about 1% of that in the solid

fuels. It does not contribute to flue

gas steam. Because of its composi-

tion, vanadium in some fuels causes

unique problems in corrosion, while

the high concentration of sodium in

most fuels leads to problems with

alkali sulphates. The composition

of the furnace deposits with oil fir-

ing varies widely depending on the

ash of the fuel. They consist of vary-

ing amount of V205, Na2SO4,

NaHSO4, MgSO4, Fe203, SiO, etc.

The deposit consists of two distinct

layers. Fourfifths of the inner black

layer is V1O5 and Na2SO4 with

NaHSO4 as the major remaining
material.^4• 12, 13,14)

An occasionally troublesome

factor in burning residual oil is the

formation of acidsmuts in the cold

end of a boiler, resulting from the

condensation of 1-I2SO4 on small

particles of carbon resulting from

incomplete combustion. These

acidic nuclie coal-esce to form fakes

of soot, which settle in the viscinity

of the stack and cause serious

annoyance because of their acidic

nature.(8

Makipaa(15)et. al. have concluded

that the accelerated corrosion oc-

curs when the chlorides are enriched

on the heating surfaces in the boiler

when fired with pulverized coal.

Malik et. al.(16) have studie Fe-base

alloys with varying carbon content

in boiler atmospheres. They con-

cluded that hot corrosion is function

of temperature and carbon content.

Carbides of the alloys provide a con-
venient route for internal penetra-
tion of salt into the alloy.

Mechanism of Corrosion

Metal loss in boilers may occur

in many different ways. Chemical

attack, however, is more common.

Corrosion may occur by gas phase
oxidation , by removal of the protec-
tive scale on metals through chemi-
cal reaction with a corrodent formed

within an overlying deposit, by re-
action of the protective scale with

constituents in the flue gas and the

overlying deposit, or by direct at-

tack of the metal surface.

There is no concensus on which

of these mechanisms is mainly

reponsible for high temperature

corrosion. The point generally

accepted is that a liquid phase is

necessary for corrosion reactions to
take place at an appreciable rate.

Fire side corrosion is the result of

many mechanisms and not exclu-

sively of one set of chemical reac-

tions.

Gas Phase Oxidation

Exposure to air and particularly

to hot flue gas rapidly provides an

oxide film on metal surfaces that

may be protective or that may be

shed eventually to expose fresh

metal to oxidation. Alloys intended

for high temperature service have

tightly adherent oxide coatings.

These minimise metal loss either by

slowing down the diffusion of metal

atoms outwards to where they can

be oxidised by surrounding atmo-

D-4



S.N. TIWARI, R.N. SHARMA AND S. PRAKASH

spheres, or by decreasing the rate of
oxygen diffusion through the scale.

Oxidation of metals take place at

rates based on linear , parabolic,

logrithmic or cubic relationships but

the parabolic law Y = K t is most

common, where Y is the thickness

of the oxidized layer, k is a constant

and t is time. Hence the rate at which

scale forms decreases as the scale

becomes thicker. The rate never

becomes zero, but as thickness con-

tinues to increase, the rate of

doxidation can become so small as

to be insignificant. A form of "ac-

celerated oxidation" can occur with

alloys containing elements that form

low melting oxides.

from the alkalies in the fuel
ash and the sulphur oxides in
the furnace atmosphere are de-
posited on this oxide layer e.g.,
K2so 4'

c. The outer surface of the K2SO4
layer becomes sticky because
of the increasing temperature
gradient so that particles of fly
ash are captured. The tempera-
ture of this fly ash increases to
the point where SO3 is released
by the thermal dissociation of
sulphur compounds in the ash
and this SO3 migrates towards
the cooler metal surface. A
layer of slag forms on the outer
surface.

Liquid Phase Corrosion

As noted earlier, the presence of
a liquid phase on the surface of a
metal is usually necessary for corro-
sion reactions to occur at high rate.
Most of the researchers are trying to
find out reactions leading at some
stage to the formation of a liquid
film. There are two principal rea-
sons for this:(1) Chemical reactions
are invariably faster when a liquid
phase is present than when only
solid-solid reactions are possible,
and (2) A liquid phase provides an
electrolyte for electrochemical at-
tack reaction with oxide scale.

Steps in this process are as
follows(4):

a. An oxide film forms on the
metal surface,

b. Alkali sulphates, originating

d. As more ash is collected,
reaching an equilibrium thick-
ness, the temperature falls in
the K2SO4 layer and reaction
with the oxide scale and the
SO3 occurs to form K3Fe(SO4)3,
with this removal of the oxide
scale, the metal oxidises further.

e. Deslagging occurs because of

normal temperature excursions

in the furnace exposing the

K3Fe(SO4) layer to the tem-

peratures high enough to dis-

sociate it in part, releasing

some SO3. Part of this SO3

moves towards the cooler part

of the deposit, where it reacts

with K2S03 still present and

the oxide scale on the tube to

form additional amount of

K3Fe(SO4). Further oxidation

of the metal occurs to provide

the normal equilibrium thick-

ness of the scale.
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Formation within the Ash Deposits

a. Loose unbonded fly ash accu-
mulates on a tube surface.

b. Alkalies in this deposit begin to

form sulphates by reactions with

the SO3 originally in the gas

stream and that formed by oxi-

dation of SO2.

c. The deposit nearest to the tube
metal continues to react with
SO3 to convert a major part of
the alkalies in this inner layer to
sulphates.

consist largely of FeS with small
amount of trisulphates. They have
concluded that the FeS must have
come from the fuel as discrete par-
ticles of unburnt pyrites. The
mechanism to account for massive
amounts of FeS in corroded areas
is as follows:

a. Alkalies from the fuel condense
on the oxidised tube surface as
alkali sulphates.

b. Unburned coal particles of py-
rites adhere to the tube surface
and form a thick deposit.

d. Iron oxides in the ash and SO3

react with these sulphates to

form alkali iron trisulphates im-

mediately next to the tube.

e. Alkali iron and an alkali alu-

minium sulphates form low

melting phases that bond firmly

to the tube metal.

f. Both in inner and the outer layer

of deposit increase in thickness

so that the temperature of the

outer layer is higher and the

sintering occurs.

g. The surface temperature even-

tually becomes high enough that

fly ash sticks to the deposit and

the rate of build up of deposit

accelerates.

Sulphide formation

The mechanism proposed by
Corey et. al."') is based on the find-
ing that black brittle scale present
occasionally in corrosion areas may

c. The pyrites gradually oxidise

to FeS and Fe3O4 with the

sulphur evolved forming SO2

and SO3 within the deposit.

d. These sulphur dioxides then

form trisulphates in small quan-

tities, leading to loss of metal.

Vanadium Compounds

Vanadium is particularly a

serious cause of fire side corrosion

because it forms many low-melt-

ing compounds that are molten at

the temperatures of superheaters.

There is a general agreement that

sodium vanadates are more corro-
sive than vanadium oxides alone.

All the sodium vanadates melt at

lower temperatures than V205. The

possible mechanism has been

described to explain how molten

vanadium salts attack a metal sur-

face:

1. Vanadates act as an oxygen
carrier.
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2. Vandates distort the normal
stable lattice of the metal oxide.

3. Molten vanadates dissolve the
normally protective oxide layer.

Chlorides

interface between the passive film
and the corrosion product film. The
deposition surface can strongly
affect deposit adherence and re-
moval. The deposits are quite po-
rous and show evidence for wick
boiling.

Chlorine present in the fuels can
contribute appreciably to metal loss
at high temperatures, either directly
through the formation of volatile
chlorides or synergistically in
combination with complex
sulphates.(4,15)

Smith and Marder(19) conclude

that circumferential cracking of

water wall boiler tubes is an

important problem in coal fired

boilers. Analysis of the problem

indicated that the crack mechanism

had two components, thermal stress

and corrosion. The corrosion com-

ponent was found to be localised

sulfidation corrosion. The

sulphidation mechanism occurs

beneath a previously existing

oxide layer and attack the fire side

surface grain boundaries. These

corroded grain boundaries act as

surface notches, which concentrate

the thermal stresses at the grain

boundaries, leading to crack

initiation. The corrosion mecha-

nism also contributes to circum-

ferential crack growth by attack-

ing the tube steel in front of the

crack tip.

Detailed examination of depos-
its of boiler tubes was made by
Tapping et. a1(20). Deposition on
to tube surfaces is a two-step
process, and spalling occurs at the

Hargrave(21) has concluded that
copper rich deposits on the boiler
tube surfaces can aggravate boiler
tube failure mechanism. Metal in
deposit can lead to severe inter-
granular cracking via liquid metal
embrittlement during a high tem-
perature overheating incident.
Thick accumulation of Cu alloy
corrosion products on boiler heat
transfer surfaces concentrate metal
temperature and thus promote over-
heating damage to boiler tubes.

Prevention of Corrosion

Fireside corrosion can rarely be
eliminated altogether. Obviously,
if alkali and sulphur could be
removed from coal, fireside corro-
sion would largely disappear.
Reduction of fireside corrosion can
be accomplished by one or more of
the following methods 00):

1. Fuel selection : use of ashless
or sulphur free fuel is perhaps
the most direct means of
minimising fireside corrosion.
Most natural and manufactured
gaseous fuels are ashle, whereas
most oils, coals, cokes, vegeta-
tion residues and waste gases
have some ash content. Any type
of fuel may contain sulphur, few
coals, oils, tars or burnable
wastes are sulphur free, whereas
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gases are more likely to be
sulphur free.

2. Combustion control : adjust-
ment of firing rate, amount of
excess air, air temperature and
amount of recirculated flue gas
can be very effective in control-
ling the amount and composi-
tion of ash deposit.

3. Boiler design and construction:

including pipe size and spac-

ing, furnace configuration size

and directing of flue gas

passages can help control ash

deposition.

4. Periodic ash removal: although

less effective in controlling

fireside corrosion than proce-

dures that reduce ash deposi-

tion, is nevertheless an impor-

tant aspect of boiler operation.
Ash removal prevents develop-

ment of conditions that alter the

distribution of metal tempera-

tures on heat transfer surfaces,

which can lead to problems such

as failure by overheating.

The tubes should be swept daily

with the tube brushes provided, or

as often as necessary to clear them

of soot.,',,

5. Additives: additives are used to

control both coal-ash and oil-

ash corrosion. Sometimes addi-

tives are mixed with fuel oil

prior to combustion. Additives

promote the formation of ash

deposits that are easily re-

moved.")

Reid') explains the advantages
of additives that are added to
change the physical or chemi-
cal characteristics of the depos-
its. They may be solid, liquid or
gaseous. The reasons for using
additives are:

i. To minimise catalytic forma-
tion of SO3 on hot surfaces.

ii. To prevent formation of corro-
sive substances on heat receiv-
ing surfaces.

iii.To decrease the sintering ten-

dency of high temperature de-

posits.

iv. To neutralise acids normally
condensing on cool surfaces.
The commonly used additives
are A1203, Si02 (Solid), CaO
and MgO (Liquid) coating and
water vapours or amonia to re-
duce SO3 formation.

Paul and Seeley(12) have sug-

gested that limiting tube metal tem-

peratures will prevent ash deposits

from becoming molten, thereby

avoiding the onset of oil ash corro-

sion. Tube metal temperatures are

limited by the use of parallel flow

and by limiting steam outlet tem-

peratures.

6. Low Excess Air : Paul and

Seeley (12) suggest that operating

a boiler with low excess air has

helped avoid oil ash corrosion

by altering the corrosive com-

bustion products. High Cr

alloys and coatings form more

stable protective scales on

tubing surfaces which result in
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lower oil-ash corrosion rates.

ReiV) concluded that of all the

practical methods of controlling

corrosion in boilers, low excess

air (LEA) appears most prom-

ising. This minimises effec-

tively to superheater and air

preheater deposits and prevents

high temperature metal wast-

age by forming high-melting,

lower oxides of vanadium in
place of V205.

Economic Aspect

The cost of fireside corrosion
are difficult to estimate Even di-
rect out-of-pocket costs are not
readily determined for materials
and for repair crews to replace
badly corroded wall tubes, super-
heater elements, air heater baskets
etc. lowered efficiency in boilers
through limited superheater tem-
perature and higher stack-gas tem-
perature also is difficult to evaluate
on cost basis. Additional power re-
quirements to move combustion
products through partially plugged
tube banks likewise add to operat-
ing costs. A further addition is the
cost of energy that can be obtained
from some other source because of a
corrosion-caused unscheduled outage.
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