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ABSTRACT

In the industrial age of today, non-destructive evaluation of materials,

components, and assemblies has become increasingly important, and

plays a crucial role, he it in space, power, oil, automobile, or steel

sector. As the consequences of component failure are more serious

than ever, the integrity of component has to be evaluated and assessed

at even, stage of its production. Presence of harmful defects, tensile

residual stress, and unwanted microstructure affects the integrity of

any component. Hence, assessment of defects, and evaluation of residual

stress and microstructure are very essential. Many nondestructive testing

and evaluation techniques are being used for detection and

characterization of defects, evaluation of residual stress, and assessment

of microstructure. They provide a tool by which integrity evaluation,

and assurance activities for components can he carried out. In this

paper, an attempt has been made to present the basic concepts of non-

destructive evaluation . The principles of different non-destructive test

techniques have been discussed, and the application of these techniques

,for evaluation of castings has been highlighted.

INTRODUCTION

testing and evaluation of cast products in a foundry industry has one primary

objective. It is to make sure that parts being produced actually meet all required

Tecifications established by the customer. Use of non-destructive testing and

evaluation (NDT&E) as a means of quality control permits the industries to

?roduce better quality products. Obviously, NDT&E in itself cannot produce a

better product. However, if inspection works in close co-operation with the

industry's quality control department and advises the department on any and all

deviations in procedure, the quality control department can then make the nec-

essary adjustments in process practice to ensure high quality products. Moreover
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in order to prevent the excessive scrap products, it is necessary for the inspection

department to catch the faulty product as soon as possible. In this way. the faulty

product can be isolated so no further labour or time will be wasted on it, and

secondly, the quality control department can make necessary corrections before

too many products are poured.

The objective of inspection of in-service cast products/components is to make

sure that the component or part in service will further satisfactiorly perform its

intendted purpose. Several non-destructive test (NDT) methods are being used to

ensure the integrity of in-service components. The interpretation of the data

obtained byNDT during such inspection is performed to a large extent by using

fracture mechanics concept. According to fracture mechanics, crack-like flaws

present in the material grow under the conjoint action of stress and environment

during service, and ultimately lead to failure of the component by growing to a

critical size. The fracture mechanics concepts allow one to calculate the critical

size of defect and enable to estimate the remaining life of the component.

Non-destructive testing (NDT) is generally used for finding , locating and sizing

a flaw, whereas non-destructive evaluation (NDE) aims to identify and charac-

terize the flaws and, consideration of physical mechanism and structure. to project

future performance and reliability. The selection of it suitable NDT method ur

a combination of NDT methods first necessitates a clear understanding of the

problem to be solved. There are six factors involved in selecting a NDT method'!.

They are: (1) the reason for performing the NDT. (2) the types of flaws of

interest in the object, (3) the size and orientation of flaw that is rejectable

(4) the anticipated location of the flaws of interest in the object. (5) the size and

shape of the object, and (6) the characteristic of the material to he inspected.

Accordingly a suitable NDT method may be selected. In this paper several non-

destructive techniques used for the inspection of castings are discussed. As it is

important for the NDT inspector to be able to locate the source of the problem.

the nature and type of discontinuities which can be expected in the material a

each stage of casting are also briefly discussed. Further a brief outline of fractuc

mechanics methodology for integrity assessment is presented.

Defects in castings

The flaws which may he formed during casting can be classified as follows:

Non-metallic inclusions : Tile non-metallic inclusions within the molten steel

which are caused by the impurities in the starting material. are lighter than the

molten metal and rise towards the surface. Most of the non-tnetallics manage to

rise to the top of the ingot but some are trapped within because they do not have

the time to reach the surface before the molten metal above them is solidified.

These inclusions are irregular in shape.
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Porosity : It is spherical or nearly spherical shaped and is caused by the en-

trapped gas in the molten material. The appearance of porosity and non-metallic

inclusions in an ingot are shown in Fig.l.

Fig. I : Porosin• and non- metallic inclusions

Shrinkage cavities : Shrinkage cavities are formed during liquid to solid contrac-

tion. These flaws are not normally associated with gas formation but a high gas

content will increase their extent. The shrinkage cavities may occur in these

following forms.

Macro-shrinkage (piping): Liquid solidification and contraction in the mould

will cause the formation of shrinkage cavities (piping). The molten material,

after it is poured into the mould starts to cool and solidify. The solidification

process starts from the surface and travels towards the centre of the ingot. On

solidification the molten metal contracts. Since the centre of the ingot is the last

to cool and solidify most of the shrinkage is concentrated in the centre. This

results in the cavity called the 'pipe'. By properly designing the mould and by

adequate hot topping, piping can be restricted to the top or to the feeder head.

Piping may extend from the top towards the interior of the ingot along the axis.

This is shown in Fig.l.

Centre-line shrinkage (frlanientar)• shrinkage) : Wherever solidification cannot

be correctly controlled and is not directional a coarse form of shrinkage may

occur. These flaws may be extensive, branching, dendritic and interconnected.

Filamentary shrinkage should theoretically occur on the centreline of the cast

section but due to temperature gradients during solidification, the flaw may

extend to the cast surface. Especially in alloys with a broad freezing range (such

as bronze) shrinkage is more dispersed than centreline.
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ig. ' : Shrinkage cariries

Microshrinkages : Shrinkage cavities may also be produced on a microscale.
During the later stages of solidification the channels to liquid metal between the

growing dendrite arms become progressively narrower . In some places the den-

drite arms may bridge over and restrict the supply of liquid steel to the now
isolated pools of liquid . The cavities that result are in very tine form and are

called "microshrinkage ". These occur between the dendrite arms ( interdentritic)

or at grain boundaries ( intercrystalline ) ( Fig. 2).

Cold shut : Cold Shut is formed when molten metal is poured over solidified

metal (see Fig. 3). When the metal is poured , it hits the mould too hard and

spatters small drops of metal. When these drops of metal hit higher up on the

mould they stick and solidify . When the rising molten metal reaches and covers

the solidified drops of metal a crack like discontinuity is formed . Cold shuts can

also be formed by the lack of fusion between two intercepting surfaces of

molten material of different temperatures.

Hot tear (Shrink crack ) : Hot tear is caused by unequal shrinking of light and

heavy sections of it casting as the metal cools . In a casting having light and

heavy sections , the light sections being smaller solidify faster, they shrink faster

pulling the heavier sections, which are hotter and not shrinking as fast, towards

them (Fig . 4). These cracks are discontinuous and generally in ragged form.

Cold or stress cracks : These cracks are formed when the metal is completely

solid and are well defined and approximately straight. They are the result of

large contraction stresses and are more likely to occur in large complicated

shapes of castings . The cast analysis may he another factor for the stress cracks.

Extreme care must he taken when alloying elements such as nickel , chromium,
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Fig. 4: Shrink crack

vanadium and molybdenum are added to increase the hardenability of the alloy.

These alloys affect the martensitic transformation temperature and may give rise

to high stresses during the cooling cycle.

Blow holes : Blow holes are small holes on the surface of the casting and are

caused by external gas emanating from the mould itself.

TEST N1ETI1ODS

A number of NDT techniques are available for testing cast materials. Some of

the widely used techniques include the followings.
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Visual Inspection

Visual inspection is a non -destructive testing technique that provides a means of

detecting and examining it variety of surface flaws, such as surface finish,

discontinuities and surface cracks. Even when other non-destructive techniques

are used to detect surface cracks. visual inspection often provides a useful supple-

ment. The time delay and costs involved in other NDT methods would he un-

acceptable where large tonnage of products are produced each day. Typically

in such cases, direct visual inspection is used for most of the production lots, and

only small areas are subjected to sensitive tests to detect surface blemishes.

Visual inspection of each casting ensures that none of its features has been

omitted or malformed by moulding errors, shut running, or mistakes in cleaning.

Most surface defects and roughness can he observed at this stage.

Liquid Penetrant Testing (LPT)

LPT is a non-destructive test method of revealing discontinuities that are opened

to the surface. The method has various application for both fabricators and users.

The basic reason for which producers use penetrant inspection is for locating

cracks, pores and other flaws which are opened to the surface being inspected.

This objective is accomplished by entrapment of the inspection liquid by the

flaws followed by visual inspection of the surface under ultraviolet or black light

(when using a fluorescent penetrant) or in normal light (with visible dye pen-

etrant )'2 .

For the use of penetrant inspection. proper preparation of the test surface is

critical. LPT on unprepared surface will only disclose gross porosity and large

cracks. However, it is essential to use machining, caustic etching, acid pickling

or a combination of these surface treatments to permit the inspector to distin-

guish fine porosity and tine cracks. For example. in case of aluminium ingots

and heavy plate sections use of acid pickle is recommended in preference to

caustic etch.

Magnetic Particle Inspection (MP1)

Magnetic particle inspection is a method of locating surface and subsurface

discontinuities in ferromagnetic materials. It depends on the fact that when the

material or the part under test is magnetised, magnetic discontinuities that lie in

a direction generally transverse to the direction of the magnetic field will cause

a leakage field to he formed at and above the surface of the part. The presence

of this leakage field, and therefore the presence of the discontinuity, is detected

by the use of finely divided ferromagnetic particles applied over the surface, with

some of the particles being gathered and held by the leakage field. This magneti-

cally held collection of particles forms an outline of the discontinuity and gen-

erally indicates its location, site. shape, and extent. Magnetic particles are ap-
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plied over a surface as dry particles, or as wet particles in a liquid carrier such
as water or oil.

Magnetic particle inspection is a highly effective and sensitive technique for

revealing cracks or similar defects at or just beneath the surface of castings made

of ferromagnetic metals. The capability of detecting discontinuities just beneath

the surface is important because such cleaning methods as shot or abrasive

blasting tend to close a surface break that might go undetected in visual or liquid

penetrant testing . Small castings can he inspected directly on bench type equip-

ment that incorporates both coils and solid contacts. Critical regions of larger

castings can be inspected by the use of yoke. coils or contact probes.

Ultrasonic Inspection

In this method a beam of high frequency sound waves are introduced into ma-

terial for the detection of surface and interior flaws in the material. The sound

wave travel through the material with some loss of energy ( attenuation ) and are

reflected at interfaces. The reflected beam is displayed and then analysed to

define the presence and location of flaws or discontinuities ia'I. Fig. 5. illustrates

typical ultrasonic indications from four types of flaws found in castings.

Ultrasound Attenuation

Coarse grained structures in thick plates, ingots and cast materials cause consid-

erable increase in attenuation, mainly because of scattering and diffraction at

Sharp echo ~ Cracks

Echos not
as sharp as .. Slag stringers
for cracks

Multiple
peak pattern

Shrinkage

Sand inclusions
Broad echo or blow holes

Fig. 5: Typical ultrasonic indications frown four types flaws found in castings
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grain boundaries. As a rule ultrasonic beam intensity decreases exponentially

with metal travel distance. The manner in which ultrasound attenuates in metals

influences discontinuity detection and material characterisation technique. There-

fore it is often become necessary to establish laboratory or on-line attenuation

measurement practices.

The ultrasonic attenuation coefficient for any solid material is determined by

measuring the ultrasonic transmission through prepared specimen for different

thickness using direct amplitude measurement. The attenuation coefficient is

calculated from the following equation in decibel per millimetre as:

20 logU (Ao/A) (1)

X

where , A,, and A are ultrasound amplitudes before and after travelling through the

material , X = travel distance . The measurement of attenuation coefficient are

often used to obtain qualitative and quantitative information on the internal struc-

ture of the products.

Measurement of Discontinuity Size

In ultrasonic test. flat bottom holes are used to simulate natural discontinuities.

The test instrument is calibrated using a series of reference standards in the form

of cylindrical blocks containing flat bottom holes of specified sizes at different

depths.Discontinuity size is determined by comparing the reflected signal ampli-

tude with that reflected by a flat bottom hole at a similar depth.

The size of discontinuity in the form of a circular disk smaller than the cross

section of the ultrasonic beam is related to the amplitude of the ultrasound

reflected from it by the following equation :

A = A,, SS exp (-tad) ... (2)
d'a'

where

A = amplitude of the sound beam reflected from the circular disk.

A,, = amplitude of the ultrasound at the transducer.

S = surface area of the transducer

S = surface area of the circular disk

(I = distance hetween the transducer and the circular disk

= ultrasonic wwavelenylh

a = attenuation cocllicient.

The distance d is assumed greater than the near field distance of the transducer

and I(X) percent reflection occurs at the circular disk. In practice, however.

reflector size can be obtained by use of a distance amplitude curve. produced by
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measuring the ultrasonic amplitude reflected from flat bottom holes at different
depths in a series of calibration blocks.

Monitoring Porosity

Individual pores do not produce distinguishable ultrasonic indications under

products test conditions. The ultrasonic indication of centreline porosity is typi-

cally in the form of noise or so-called grass in the centre of A-scan display. This

makes it difficult to distinguish between porosity and large grained structure that

produces similar ultrasonic indications. It is common practice to verify the pres-

ence of porosity by monitoring the noise level and the reduction in amplitude of

the back echo signal. For example, if the noise level reaches 50 per cent of the

alarm level and the hack echo is attenuated to 50% of its original amplitude,

there is good chance that porosity is present in that sections of the material.

However, plates with large grain structure might produce a similar effect and this

could result in rejection of good material. In such cases ultrasonic data acquisi-

tion systems, which offer digital filtering, can be used to eliminates the fre-

quency components of the incident ultrasound that might be particularly sensi-

tive to the grain structure of the plate.

Signal processing technique may be used to more accurately verify the presence

of porosity and also to approximate the size and volume fraction. This is done

by measuring the changes in frequency dependence of the attenuation coeffi-

cient. Using a broad band transducer, the front and the back surface signals of

the material are acquired and digitised. The frequency spectra of both signals are

obtained by performing a Fourier transform. The frequency dependence curve

of the attenuation coefficient is then obtained by deconvolving the hack surface

echo spectrum by that from the front surface. An attenuation coefficient value

higher than normal verifies the presence of porosity. Quantitative measurements

can be made by taking the slope of the attenuation curve or by comparing

attenuation coefficient values with that from a reference standard. Another valu-

able quantitative method uses a inflection point that may appear on the attenu-

ation versus frequency plot. For example, in cast aluminium, the average pore

size is theoretically related to the frequency at inflection point by the following

equation :
1.08

... (3)

where

f4, = the frequency of the inflection point (MHz)

R = the average pore radius (nom).

The factor 1.08 accounts for the Poisson's ratio of aluminium and scattering

cross section of the porosity. The average volume fraction of porosity C, may be
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determined by measuring the attenuation co-efficient at the inflection point and

using the following equation.

C = 122 at,R ... (4)

where

a = attenuation coefficient (nepers per mm)

R = average pore radius (mm)

The factor of 122 is related to the average cross section of the porosity and to

the Poisson's ratio of aluminium.

Microstructure Characterization and Estimation of Mechanical Properties

Microstructure characterisation is :mother interesting area of NDE. It can be

done in situ without damaging the object by using replication microscopy or by

using conventional optical microscopy technique with portable equipment. Other

methods include ultrasonic wave velocity measurement . The velocity of ultra-
sonic transmission of a casting can be related to modulus of elasticity. In cast

iron, the change from flake graphite to nodular graphite is related to an increase

in both modulus of elasticity and strength, therefore, ultrasonic velocity measure-
ment can be employed as a guide to nodularity.

Radiographic Inspection

It is based on the differential absorption of the penetrating radiation (x-ray or

y-ray) and is used to detect the features of it component or assembly that exhibits

difference in thickness or physical density as compared to the surrounding

material'"'. It is one of the most effective NDT method for quality control of

castings.

Radiation Sources used in Casting Radiography

Gamma ray sources, especially Co-60 and Ir-192, are often used in casting

radiography. These sources have some advantage (like simple apparatus, com-

pactness, and independent from external power), over x-rays. However the use

of x-rays are essential for some application. For example low energy (kilovolt)

x-rays are used for testing light metals such as aluminium , and thin metal thick-

ness of steel. High energy (megavolt) x-rays are used for steel having section

thickness in excess of 20 cm. (please see table 1). However, the best way is to

select the sources that produces desired result.

Defect Detection and Standards :

Radiographic inspection is a very effective means of detecting such defects as

cold shuts, internal shrinkage, porosity. core shifts and inclusion in castings. For
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example inclusions will appear on the radiograph as darker indication (inclusion

less denser than the matrix) or lighter indication (inclusions more denser than the

matrix). Sand inclusion and dross. which are non-metallic oxides appear oil the

radiograph as irregular dark, blotches. Shrinkage and cold shuts will appear on

the radiograph as dark spot and crack respectively.

Table / : AS7}1I reference rcrdio^raphs for efif/emnt cast materials

SI. Material Section thickness ASTM reference Radiation

No. /inchl standard source used

I. Aluminium and 1 /4 to 2

magnesium castings

E 1555 X-rays

2. Aluminium and

magnesium die

casting

1/8 to I F 505 X-rays

3. High strength upto 6 E 272 X-rays and

copper base

and nickel-

copper alloy,

castings

Ir-192

4. Tin bronze Upto 2 E 310 X-rays and

castings Ir-192

5. Steel thin

precision

castings

1/8 to 3/4 E 192 X-rays

6. Steel castings 2 to 4 1 /2 E 186 X-rays.

heavy walled Ir-192

and Co-6O

7. Steel castings 4 1/2 to 12 E 280 X-rays. and

heavy walled Co-60

8. Gray Iron Upto 4 E 802 X-rays,

castings Ir-192 &

Co-60

The sensitivity, or the ability to detect flaws . of radiographic inspection depends

on close control of the inspection technique including the geometric relationship

among the points of x-ray emission, the casting and the x-ray imaging plane.

The smallest detectable variation in metal thickness lies between 0.5 and 2.01ii

of total section thickness. Narrow flaws, such as cracks must lie in a plane
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approximately parallel to the emergent x-ray beam. Aluminium alloy castings are

ideally suited to examination by radiography because of their relatively low

density. A given thickness of aluminium alloy can he penetrated with about one-

third the power required for penetrating the same thickness of steel. Aluminium

alloys are most often radiographed with an x-ray machine. Although gamma ray

method is used to lesser extent than the x-ray method it is equally as effective

for detecting flaws. Aluminium alloys are most often radiographed to detect

same type of flaws that may exist in other type of castings i.e. conditions such

as porosity or shrinkage which register as low density spots and appear blacker

on the film than areas of sound spots. There exists standard reference radio-

graphs to illustrate the types and degree of discontinuities that may he found in

castings. These standard reference radiographs are available in ASTM standards

and are listed in Table 1.

Eddy Current Testing

In this method the change of impedance of a test coil brought close to a conduc-

tive material indicates the eddy current induced by the coil and thereby indicates

certain properties or defects of the material)" '"I. Eddy current test can supplement

or sometime replace LPT for detection of surface connected discontinuities, but

is not as sensitive to small open defects as LPT or MPI is. Because of the skin

effect eddy current inspection is generally restricted to depth less than 6mm. The

method is effective with both ferromagnetic and non-ferromagnetic materials. It

can also he used for the sorting of mixed alloys and for the evaluation of

overageing or heat damage to metals and alloys.

Eddy current Conductivity and hardness testing methods are commonly used to

asses heat damage of various heat treatable alloys. In order to permit a quanti-

tative assessment of heat damaged material, the establishment of conductivity,

hardness and strength (CHS) relationship is essential for each alloy. This is

necessary because of the interplay of several factors that can affect the C'HS

relationship in a variety of ways. Eddy current or coercive force can he used to

detect many changes in casting structure and properties. Eddy current indications

are useful for evaluating pearlite and carbide in iron matrix.

Acoustic Emission Testing

Acoustic emission testing is based on the fact that solid materials emit sound or

acoustic emission when they are mechanically or thermally stressed to the point

where deformation or fracturing occurs These elastic waves can be picked

up and analysed by an aoustic emission test system to monitor the condition of

the material under stress. The technique being capable of detecting and locating

dynamic detects, has great potential for on-line integrity monitoring of industrial

components. For example pressure vessel and pipes are routinely monitored with
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the help of AE with regard to their fitness and integrity''"'. There have been

also a few studies of AE during solidification of aluminium alloys. I t was Sug-

gested that AE was generated by formation of porosity. It was found that AE was

proportional to the volume fraction of porosity. The lower hydrogen solubility of

solid aluminium results in a hydrogen supersaturation in the melt close to the

liquid-solid interface. The relief of this supersaturation act as a driving force for

hydrogen huhhlc formatio n in a role analogous to that strain energy reduction in

the formation

FRACTURE MECHANICS METHODOLOGY FOR EVALUATION OF

NDT RESULTS

The cracks that are detected by NDT may grow with time due to operation

mechanism such as fatigue. stress corrosion or creep, and with increase of crack

length the residual strength of the component would decrease. The integrity of

the component will be impaired. when the residual strength falls to design or

operation stress level. The situation can be schematically depicted as shown in

Fig. 6. With reference to this figure. it may he noted that the strength of the

singularity in the stress field at the crack tip is characterized by stress intensity

factor. K, which can be expressed as a function of the applied stress 6, and the

crack length. a, through relation of the forms"".

K=av Y ... (5)

where Y is a geometric function dependent on the component configuration and

Stress

UTS

Design Stress
Level

Residual
Strength
Curve

Crack Length

Max. permissible crack size

Fig. 6 : Decrease in residual strength of components on increase of crack length
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the crack length. For all materials it citical va!ue of the stress intensity factor K

exists hevond which the stability of cracks contained in them cannot he ensured.

Hence. K can he as the limit up to which an applied stress intensity factor may

he tolerated without compromising the integrity of a component. Substituting. K

for K for a range of crack length the maximum stress that can be endured by a

component can he obtained. Similarly to obtain the maximum pernlissihle crack

site. K and the service stress can be substituted in to equation (5) To obtain

information on the life time of it component. the time dependent of the crack

growth process has to he characterized. For example, for crack growth through

fatigue, the crack growth per stress cycle, da/dN. can be related to AK (obtained

by using Aa instead of c; in equation (5) ) Through equation of the form.

da
- = C.\K'" ... (6)
dN

where. c, and m, are constants. Such equation can he rearranged and integrated

as follows, to estimate the remaining life Nit of the component.

t (fit ..
N _ it (7)

C. Ak

In the above equation a,, is the initial crack length and a is the maximum

permissible crack length.

CASE STI Ul'

Ultrasonic Testing of a Rail Manufactured from Concast Billet

In order to asses the integrity of a in-service rail, which was manufactured from

concast billet, it piece of it about 2m length was ultrasonically tested at NML.

File test was carried out using Echograph I1)30 flaw detector from Karl Deutsch.

Germany. Both normal and angle beam probes were used in the test. The probe

details are given in Table 2 and the probe positions are shown schematically in

Fig.7.

Table 2 : Probe details

Probe 1vpe Frequenc \ !rV/ll;.l Costal D imensions (nun)

A Angle 45 2 R x 9

B Normal 4 b 6

C Normal 4 h 24
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The test was started with probe A . It was placed on the top surface of the rail

as shown in Fig. 7, and was moved along the rail len g th starting from one end

to the other end. A large number of flaws (I to 39) were detected by this probe.

They are listed in Table 3 . A high gain approach was used to detect these (laws,

and accordingly a gain of 80dB was used for this test . The test was then carried

out using probe B. The test surface here was same as that for probe A. By this

probe flaw No. 3, 37, 38, 41, and 42 only were detected (see Table 3 ). finally

the test was conducted using probe C . The scanning surface here was the side of

the rail head as showing Fig. 7. All the flaws except flaw No . 3, 37 and 38 (see

Table 3 ) were detected by this probe . The gain was set at 90 dB for both probes

B and C.

As can he seen in Table 3 that a total number of 41 flaws were detected over a

length of 2 metre rail. Out of these 41. 36 have vertical orientation 2 have

longitudinal orientation and 3 have trap erne orientation. This shows that most

of flaws were vertical cracks located at a depth of 18-25 mm from the track

surface at the centre line. These flaws are very fine cracks having a length of

about 3-5 min and are jagged. This is the reason, why a high gain (above 80dB)

was required to detect these flaws. A typical view of one of the crack having

horizontal orientation is shown in Fig. S. This was obtained by transversely

slicing the rail, extracting the rail head and polishing it.

Probe R Probe A Probe B
OF7

Longitudinal
Defects t.

Fig. 7 : Schematic view ol'probe positions
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Table 3 : Ultrasonic Test Results

Flaw Distance from Distance Distance Detected by probe
f idf

'type of
flawsrom s eNumber from weld rom top

end (min ) surface (mm) (right ) (mm) A B C

1 150 14 35 3 x 3 V

2 170 21 35 3 x 3 V

3 215 21 35 3 3 x T

4 300 16 34 3 x 3 V

5 345 23 35 3 x 3 V

6 380 21 35 3 x 3 V

7 465 25 34 3 x 3 V

8 535 28 34 3 x 3 V

9 555 18 34 3 x 3 V

10 600 25 34 3 x 3 V

II 610 25 35 3 x 3 V

12 625 18 35 3 x 3 V

13 740 18 36 3 x 3 V

14 745 17 35 3 x 3 V

15 755 14 36 3 x 3 V

16 785 28 35 3 x 3 V

17 805 25 35 3 x 3 V

18 840 21 36 3 x 3 V

19 865 25 34 3 x 3 V

20 880 28 35 3 x 3 V

21 910 25 35 3 x 3 V

22 940 25 35 3 x 3 V

23 955 21 36 3 x 3 V

24 1(XX) 19 34 3 x 3 V

25 1060 21 35 3 x 3 V

26 1085 21 36 3 x 3 V

27 1125 25 34 3 x 3 V

28 1150 25 35 3 x 3 V

29 1240 21 36 3 x 3 V

30 1290 25 34 3 x 3 V

31 1315 28 36 3 x 3 V

32 1325 23 35 3 x 3 V

33 1440 18 36 3 x 3 V

34 1555 19 34 3 x 3 V

35 1590 20 35 3 x 3 V

36 1680 24 35 3 x 3 V

37 1765 21 35 3 3 x T

38 1800 20 35 3 3 x T

39 1990 19 35 3 x 3 V

40 430 21 35 3 3 L

41 700 19 35 x 3 3 L
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Fig. 8: Macrophotograph of
polished rail head showing a

vertical crack

CONCLUDING REMARKS

In this paper various non-destructive techniques used for inspection of castings

are discussed. Since it is not practically possible to extend the discussion to

every details of all the techniques, the extents of the discussion are kept to the

minimum.
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