WITH THE BEST COMPLIMENTS OF

Andhra Cement Co. Ltd., Vijayawada

PIONEERS IN MANUFACTURER OF SPONGE IRON

IN COLLABORATION WITH NML
“Success comes to those who dare and act; it seldom goes to the timid” — Jawaharlal Nehru.

“A nation’s strength ultimately consists in what it can do on its own and not in what it can borrow from others” — Indira Gandhi.
Late Shri Jawaharlal Nehru, Former Prime Minister and President of Council of Scientific and Industrial Research

Late Dr. S. S. Bhatnagar, Founder of Council of Scientific and Industrial Research and its first Director-General

Late Sir Jehangir Ghandy, Former Chairman, Planning Committee of NML and Chairman, NML Executive Council
I am glad to know that the National Metallurgical Laboratory, Jamshedpur, will celebrate its Silver Jubilee shortly. On this happy occasion I send my felicitations to all those associated with this laboratory and wish it continued progress and prosperity in the years to come.
I am glad to know that the National Metallurgical Laboratory, Jamshedpur, will celebrate its Silver Jubilee in November, 1975. The Laboratory was established to foster applied and fundamental research and development work on Metallurgical and allied subjects on an organised basis. It is gratifying to note the progress it has made during the twenty five years of its existence. I wish the Laboratory continued success in its endeavours to serve the mineral and metal based industries in the country. I send my best wishes for the success of the Silver Jubilee Celebrations.

(B.D. Jatt1)
MESSAGE

Ancient India's metallurgical skills were world renowned. But feudalism and foreign rule prevented us from taking advantage of the Industrial Revolution and the discoveries of modern science. Only in the last three decades could we shape our own destiny. Our programme of economic regeneration assigns a crucial role to the development of our mineral resources. Through its fundamental and applied research, the National Metallurgical Laboratory has made a significant contribution to the building up of key industries and to the attainment of technological self-reliance.

I am glad to know that the Laboratory is completing twenty-five years this November. My good wishes for its further success.

(Indira Gandhi)

New Delhi,
July 15, 1975.
MESSAGE

It is heartening to know that the National Metallurgical Laboratory, Jamshedpur, will be completing its 25 years of existence on the 14th November, this year. This Laboratory has made commendable progress in various fields of metallurgical science and technology. For economic progress of a country, scientific and technological developments are essential. This National Laboratory, which had the privilege of being formally inaugurated by the Prime Minister of India Late Pandit Jawaharlal Nehru, is successfully steering under the able guidance of its present Director.

This National Laboratory fully deserves to celebrate its Silver Jubilee, and I convey my best wishes for its grand success.
MESSAGE.

It gives me pleasure to send my greetings to the National Metallurgical Laboratory, Jamshedpur on the occasion of its Silver Jubilee Celebrations. This laboratory has made significant contributions towards the growth of metallurgical industry in the country by fostering research and offering solutions to many technological problems. I hope, this laboratory will grow from strength to strength in the days to come and serve metallurgical research in still more effective way.

(Jagannath Mishra)
Chief Minister, Bihar.
2. 8. 75
MESSAGE

I am glad to learn that the National Metallurgical Laboratory will be celebrating its Silver Jubilee in November this year. It is significant that this year the industries are seeking to utilise the sponge iron technology developed by this laboratory. With increasing demands for development and modification of technology to suit Indian conditions, I am sure the National Metallurgical Laboratory will be increasingly called upon by industries to come to their assistance. My greetings and best wishes go to the Director and his band of scientists on the occasion of the Silver Jubilee.

(P. N. Haksar)
Message

India is rich in mineral and metal resources, both in variety and availability. The National Metallurgical Laboratory, Jamshedpur, founded 25 years ago to generate appropriate technology and aid the industrial and economic growth, has earned for itself the affection and trust from the industry, through its technical competence and contributions in metallurgical and allied subjects.

Among its several significant achievements are the beneficiation of low grade ores and minerals, production of ferro-alloys, aluminium alloys, utilisation of metallurgical wastes and more recently the development of technology for the production of sponge-iron.

NML has come of age, making its impact felt, on the economic and industrial growth, serving the industry and the country at its best. On the occasion of the Silver Jubilee of the NML, CSIR family joins me to offer our very warm felicitations to the Director, scientists and other colleagues and wish them continued successes in their endeavour.

(Y. Nayudamma)
DIRECTOR-GENERAL
CSIR
Directors & Scientists-in-Charge of The National Metallurgical Laboratory

Mr. E. H. Bucknall
Director (1953-1956)

Dr. B. R. Nijhawan
Director (1956-1966)

Prof. V. A. Altekar
Director (Since August 1969)

Directors previous to 1953
Late Dr. G. Sachs (1949-1950)
Prof. Charles Crussard (1950-51)
Late Dr. G. P. Contractor
Acting Director (1951-53)

Dr. T. Banerjee

Shri P. I. A. Narayanan
The National Metallurgical Laboratory was inaugurated on 26th November, 1950 by late Pandit Jawaharlal Nehru with the objective of fostering applied and fundamental metallurgical research on an organized basis and to serve as a central station for carrying out research and development work on indigenous ores, minerals, refractories, ferrous and non-ferrous metals and alloys etc. in relation to their potential applications in Indian mineral and metal industries.

With the advent of Five Year Plans shortly after independence, stress was laid on the establishment of basic industries and utilization of indigenous raw materials. In this context, the laboratory's research and development programme was reoriented to suit the requirements of dynamic growth and expansion of Indian mineral and metal industries under the impact of successive Five Year Plans. The discoveries of new deposits of virgin raw materials and the dearth of foreign exchange added additional responsibility on the laboratory to find out ways and means of the utilization of available resources to the fullest extent as well as development of substitute products to minimize and eliminate as far as practicable the imported metals, alloys and minerals.

There was thus need for expansion of the laboratory to cope up with increased quantum of work in multifarious fields of metallurgical science and technology. The laboratory was, therefore, progressively equipped on modern lines to undertake planned research and development projects in the context of country's industrialization programmes.

It became imperative in pursuing various applied projects to study on pilot plant scale trials, potential practical themes so as to determine their suitability for commercial exploitation under Indian raw materials conditions. This resulted in progressive establishment of various pilot plants. With the changing pattern of industrialization, installation of more number of pilot and semi-commercial plants are being actively pursued. Many of these pilot plants and precision equipments are entirely designed and fabricated by the laboratory.

The research and development work of the National Metallurgical Laboratory, during the last decade, have been geared up to generate a continuous dialogue between the researchers, planners, users and industries for identification and solution of problems pertaining to various disciplines of metallurgy against the background of industrial and national needs. This has resulted in winning the confidence of the industries and forging close links with them. The metal and mineral industries both in public and private sectors are showing keen interest in the processes and products developed by the Laboratory and are referring their problems and sponsoring projects in ever increasing number.

The National Metallurgical Laboratory has developed expertise in many disciplines which is utilized by industrial and other organizations both at national and international levels. Such consultancy work relates to preparation of feasibility and investigational project reports, setting up and commissioning of plants, solution of plant operation problems etc. Thus, based on extensive pilot plant investigations, consultancy and assistance provided the following plants have either been installed or under installation.

1. Iron Ore Beneficiation and Sintering Plants of M/s. Hindustan Steel Limited.
2. Iron Ore Beneficiation & Sintering Plant of M/s. Tata Iron & Steel Co. Ltd.
5. A Central Pelletization Plant in Collaboration with MECON.
8. Beneficiation Plant Malanjkhand Copper Project for M/s Hindustan Copper Ltd.

13. Graphite Beneficiation Plant and Graphite Crucible Production Plant for Andhra Pradesh Industrial Development Corporation.

The Laboratory's contribution during the past two and half decades is by no means small. India's first commercial sponge iron plant has been commissioned and started production based on the technology of solid reduction process as developed in the Laboratory. The plant has been set up by M/s. Andhra Cement Company, Vijaywada, with the assistance and technical collaboration of the Laboratory. Production of sponge iron apart from mitigating the shortage of steel scrap will greatly facilitate in increasing the steel production through mini steel plants in the country.

The development of electric grade aluminium alloy (NML—PM2) has made a considerable impact in substituting the imported copper for production of electrical conductors, cables, winding wires etc. The product developed in the Laboratory is under commercial production by M/s. Aluminium Cable and Conductor (UP) Ltd., Calcutta, M/s. Bharati Smelting & Refining Corporation, Bombay and M/s. Galada Continuous Casting Ltd., Hyderabad. An indigenous electrical resistance alloy suitable for manufacture of heating elements has been developed and is now under commercial production by M/s. Cable Works (India) Ltd., Faridabad. Another firm M/s. Burjwal Electricals, U. P. is installing a plant for its production. The alloy developed can replace the conventional imported heating element like 'Nichrome', 'Kanthal', etc. containing nickel and cobalt which are at present not produced in the country.

For the manufacture of alloy, tool and special steels, special types of ferro-alloys are needed which are to be imported. NML has developed know-how for the production of some special types of ferro-alloys which are now commercially produced by a number of firms which have resulted in reducing and eliminating their imports.

For the first time in the country, vanadium has been extracted on an industrial scale at Mysore Iron & Steel Works, utilizing the Laboratory developed technology, from vanadiferous iron ores available near Bhadravati, where the steel plant is situated. This technology also yields high grade pig iron as a bye-product.

Medium phosphoric Indian pig iron requires to be treated by basic open hearth process for conversion into proper grade steel which needs heavy capital investment. NML has developed technique for its conversion directly into steel by side-blown basic converter process which can be installed and utilized by medium and small steel foundries to meet their needs for steel casting. The 'know how' developed has been licensed for commercial production.

In the manufacture of lower denomination coins like 1, 2, 3, 5 and 10 paisa coins, the aluminium—magnesium alloy developed by the Laboratory in collaboration with Govt. of India, Mint, is utilized. This has replaced the use of copper and nickel which are to be imported for the purpose. Due to the scarcity of zinc the Laboratory's technique of producing aluminized steel products in place of galvanized materials is commercially implemented by a number of firms. The processes of manufacturing electrolytic manganese metal from low grade ores, preparation of synthetic cryolite etc. are now under commercial implementation.

In the field of corrosion of metals and alloys, the Laboratory has developed an aluminium based alloy which can be used in place of the conventional imported alloy for protection of the hull of the sea going vessel. Besides, a large number of industrial corrosion problems have been investigated and suitable remedial measures suggested which have resulted in minimizing the plant corrosion problems.

Standard reference materials are imported for the purpose of accurate chemical analysis. The Laboratory has developed technique and now producing different types of standard materials for chemical and spectrographic analysis which are supplied to research and industrial organizations to meet their need.

To assist the foundries, the Laboratory has investigated a large number of foundry moulding sands and bonding clays and have determined their suitability for different casting purposes. This has helped the foundry industries in selecting the proper types of foundry raw materials and also setting up sand processing units. A large number of industrial foundry problems have been success-
fully solved and foundries concerned have been furnished with findings followed by practical demonstration of the operations involved. An equi-blast-cum-balanced blast cupola developed by the Laboratory has been set up in a number of foundries in Punjab and Haryana Region. A type of self-setting sand and wear and abrasion resistant cast iron have also been developed.

An important item in metal production is the refractory materials which are used in lining of the furnace for the protection of the metal structure. Many types of refractories such as fosterite refractories, sillimanite refractories, kyanite refractories, carbon refractories, magnesite refractories, chromemagnesite refractories etc. have been developed from raw materials hitherto unexploited. A dense carbon aggregate suitable for making soderberg paste for the manufacture of electrodes in electric furnace has been developed which otherwise has to be imported. Carbon and clay bonded graphite crucibles suitable for melting of non-ferrous metals were used to be imported. Based on the technique developed in the Laboratory these products are now manufactured in the country mostly from indigenous raw materials. A type of welding flux suitable for submerged arc welding, which used to be imported, is now commercially produced utilizing the NML process.

Causes of service failures of metals and alloys in commercial plants and equipments have been extensively investigated in the Laboratory and suggestion to overcome such failures have been furnished to concerned industries. Utilization of metallurgical waste products has been focussed by the National Metallurgical Laboratory to meet many of the essential needs of the country. The ‘know-how’ of recovery of
zinc from galvanizers’ dross has been licensed to industry. A process for the recovery of tin from tinplate scrap has been worked out which can lead to the conservation and utilization of this valued imported metal. Know-how for the preparation of various types of metallic powder have been developed and licensed for commercial production.

Many of the precision equipments, apparatus and pilot plants have been fully designed and fabricated in the Laboratory which has saved considerable amount of foreign exchange as well as economised the expenditure of the Laboratory.

For the development of steels for high temperature service as required in aircraft, boilers, pressure vessels, turbine etc. the Laboratory with the assistance of UNDP has set up a Creep Testing Laboratory with 150 Test points with provision to expand to 400 Test Points.

The future development programme of the Laboratory comprises of augmentation of mineral beneficiation and extraction metallurgical facilities and a National Corrosion Research Centre with the assistance of UNDP. Adequate Metal working facility has also been planned.

Due to unfortunate force of circumstances the Laboratory has suffered due to lack of space. Its activities and residential colonies had to be dispersed over widely separated small patches of land obtained from time to time. In view of this, a decision was taken to obtain one single piece of 10 acres at Adityapur, about 10 Kilometres from Jamshedpur for the development and expansion programme of augmentation of mineral beneficition and hydro-electro-metallurgical extraction facilities.

A major activity of the Laboratory relates to the free technical advice given to the industries for solution of their problems, which do not involve any investigational work. A large number of industries, particularly the small scale industries, have been benefitted by this service.

The Laboratory is holding periodic ‘Get-togethers’ in respective State Capitals, to appraise the industries the products and processes developed by the Laboratory and the assistance that can be rendered for the commercial exploitation of these materials as well as to study and investigate their problems for the betterment of their products. Entrepreneurs, industrialists, business people as also Govt. Officers join in these get togethers.

For the dissemination and exchange of technical information and ideas, the Laboratory holds symposia and seminars on topical metallurgical and allied subjects. Twenty such symposia and seminars have been held so far and most of the proceedings containing technical papers and discussions have been published. Besides, the Laboratory brings out its own journal, ‘NML Technical Journal’ which has been well received in the world of technical journalism. Monographs relating to results of investigations conducted on specific subjects are brought out from time to time. A monthly publication on ‘Documented Survey on Metallurgical Development’ containing classified abstracts of papers pertaining to metallurgical and allied field published in various scientific and technical journals of the world is also brought out. A House bulletin entitled ‘NML News Letter’ is published monthly for internal circulation.

The National Metallurgical Laboratory during its twenty-five years of existence has contributed towards setting up of several commercial plants through consultancy and investigation and production of a number of products based on indigenous raw materials which have saved a few crores of rupees in terms of foreign exchange.

The scope of research and development work at National Metallurgical Laboratory is as vast as it is challenging; this challenge is being effectively met by a band of dedicated scientists and staff which has resulted in its obtaining recognition both from overseas and at home as one of the leading metallurgical centres of research.
<table>
<thead>
<tr>
<th>Name</th>
<th>Present Designation</th>
<th>Date of Appointment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shri G. C. Mishra</td>
<td>Mechanic</td>
<td>2.12.1946</td>
</tr>
<tr>
<td>P. R. Mahanty</td>
<td>Mistry</td>
<td>7. 1.1948</td>
</tr>
<tr>
<td>D. S. Tandon</td>
<td>Scientist 'C'</td>
<td>9. 4.1948</td>
</tr>
<tr>
<td>Sewa Singh</td>
<td>Scientist 'C1'</td>
<td>30. 8.1948</td>
</tr>
<tr>
<td>Md. Yakub</td>
<td>Foreman</td>
<td>6. 9.1948</td>
</tr>
<tr>
<td>Gian Singh</td>
<td>Assistant</td>
<td>8. 9.1948</td>
</tr>
<tr>
<td>Amlok Singh</td>
<td>Foreman</td>
<td>20. 9.1948</td>
</tr>
<tr>
<td>Motilal</td>
<td>Mistry</td>
<td>23.10.1948</td>
</tr>
<tr>
<td>B. B. Mishra</td>
<td>Mechanic</td>
<td>5.11.1948</td>
</tr>
<tr>
<td>Shambhu Singh</td>
<td>Mistry</td>
<td>27.11.1948</td>
</tr>
<tr>
<td>A. K. Choudhury</td>
<td>Foreman</td>
<td>1.12.1948</td>
</tr>
<tr>
<td>K. S. Krishnan</td>
<td>Sr. Stenographer</td>
<td>17.12.1948</td>
</tr>
<tr>
<td>Sudhanshu Kr. Bose</td>
<td>S. T. A.</td>
<td>27.12.1948</td>
</tr>
<tr>
<td>H. K. Chakraborty</td>
<td>Scientist 'E'</td>
<td>15. 1.1949</td>
</tr>
<tr>
<td>K. N. Mukherjee</td>
<td>Safety Inspector</td>
<td>21. 1.1949</td>
</tr>
<tr>
<td>Harbhajan Singh</td>
<td>Foreman</td>
<td>25. 1.1949</td>
</tr>
<tr>
<td>G. B. Paul</td>
<td>Foreman</td>
<td>1. 3.1949</td>
</tr>
<tr>
<td>B. N. Pani</td>
<td>Sr. Gestetner Operator</td>
<td>4. 4.1949</td>
</tr>
<tr>
<td>K. N. Srivastava</td>
<td>Scientist 'E'</td>
<td>16. 5.1949</td>
</tr>
<tr>
<td>A. M. Nair</td>
<td>Sr. Stenographer</td>
<td>21. 5.1949</td>
</tr>
<tr>
<td>N. G. Banerjee</td>
<td>Scientist 'E'</td>
<td>24. 5.1949</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Name</td>
<td>Present Designation</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>23.</td>
<td>Shri G. P. Mathur</td>
<td>Scientist 'F'</td>
</tr>
<tr>
<td>24.</td>
<td>Dr. S. S. Bhatnagar</td>
<td>Scientist 'E'</td>
</tr>
<tr>
<td>25.</td>
<td>Shri A. N. Kapoor</td>
<td>Scientist 'E'</td>
</tr>
<tr>
<td>26.</td>
<td>Shri Mukhtari Lal</td>
<td>Mistry (NML F. S. Batala)</td>
</tr>
<tr>
<td>27.</td>
<td>Dr. N. Dhananjayan</td>
<td>Scientist 'C'</td>
</tr>
<tr>
<td>28.</td>
<td>Shri K. D. Pillai</td>
<td>Foreman</td>
</tr>
<tr>
<td>29.</td>
<td>" V. S. Sampath</td>
<td>Scientist 'C'</td>
</tr>
<tr>
<td>30.</td>
<td>Kartar Singh</td>
<td>Technician</td>
</tr>
<tr>
<td>31.</td>
<td>Mohinder Singh</td>
<td>Mechanic</td>
</tr>
<tr>
<td>32.</td>
<td>C. K. Das</td>
<td>Scientist 'B1'</td>
</tr>
<tr>
<td>33.</td>
<td>G. D. Sem</td>
<td>Scientist 'B'</td>
</tr>
<tr>
<td>34.</td>
<td>Santosh Kr. Banerjee</td>
<td>Scientist 'E'</td>
</tr>
<tr>
<td>35.</td>
<td>T. Adeyya</td>
<td>Sr. Stenographer</td>
</tr>
<tr>
<td>36.</td>
<td>Dasrath Pathak</td>
<td>Mechanic</td>
</tr>
<tr>
<td>37.</td>
<td>Ramadhar</td>
<td>Garden Choudhury</td>
</tr>
<tr>
<td>38.</td>
<td>Srinivas Naik</td>
<td>Garden Choudhury</td>
</tr>
<tr>
<td>39.</td>
<td>P. C. Bose</td>
<td>Foreman</td>
</tr>
<tr>
<td>40.</td>
<td>Dr. Ved Prakash</td>
<td>Scientist 'E'</td>
</tr>
<tr>
<td>41.</td>
<td>Shri N. N. Lahiri</td>
<td>Fine Mechanic</td>
</tr>
<tr>
<td>42.</td>
<td>" R. Rama Rao</td>
<td>Foreman</td>
</tr>
<tr>
<td>43.</td>
<td>" H. A. Deb</td>
<td>Mechanic</td>
</tr>
</tbody>
</table>
Awards Received by Staff Members
(Past and Present)

<table>
<thead>
<tr>
<th>Awards</th>
<th>Recipient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Padma Shri by President of India</td>
<td>Dr. B. R. Nijhawan</td>
</tr>
<tr>
<td>Shanti Swaroop Bhatnagar Memorial Award by CSIR</td>
<td>Dr. B. R. Nijhawan</td>
</tr>
<tr>
<td>National Metallurgists' Award by Ministry of Steel & Mines Government of India</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Prof. V. A. Altekar</td>
</tr>
<tr>
<td></td>
<td>2. Shri P. P. Bhatnagar</td>
</tr>
<tr>
<td></td>
<td>3. Dr. R. Kumar</td>
</tr>
<tr>
<td></td>
<td>4. Dr. S. S. Bhatnagar</td>
</tr>
<tr>
<td></td>
<td>5. Dr. M. R. K. Rao</td>
</tr>
<tr>
<td></td>
<td>6. Dr. A. K. Lahiri</td>
</tr>
<tr>
<td></td>
<td>7. Shri K. N. Gupta</td>
</tr>
<tr>
<td>National Mineral Award by Deptt. of Mines, Ministry of Steel & Mines, Government of India</td>
<td>Shri G. P. Mathur</td>
</tr>
<tr>
<td></td>
<td>1. Prof. V. A. Altekar</td>
</tr>
<tr>
<td></td>
<td>2. Dr. M. N. Parthasarathy</td>
</tr>
<tr>
<td>Kamani Gold Medal by Indian Institute of Metals</td>
<td>3. Shri S. M. Arora</td>
</tr>
<tr>
<td></td>
<td>4. Shri R. N. Mishra</td>
</tr>
<tr>
<td>Binani Gold Medal by Indian Institute of Metals</td>
<td>Dr. R. Kumar</td>
</tr>
<tr>
<td></td>
<td>2. Dr. Manjit Singh</td>
</tr>
<tr>
<td></td>
<td>3. Dr. N. Dhananjayan</td>
</tr>
<tr>
<td></td>
<td>4. Shri P. P. Bhatnagar</td>
</tr>
<tr>
<td>Japan Iron & Steel Institute Gold Medal</td>
<td>Dr. B. R. Nijhawan</td>
</tr>
<tr>
<td>Indian Institute of Foundrymen Gold Medal</td>
<td>Shri R. M. Krishnan</td>
</tr>
<tr>
<td>Silver Plaque Award by Indian Institute of Foundrymen</td>
<td>Dr. B. R. Nijhawan</td>
</tr>
<tr>
<td>Invention Promotion Board Award</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Prof. V. A. Altekar</td>
</tr>
<tr>
<td></td>
<td>2. Shri P. P. Bhatnagar</td>
</tr>
<tr>
<td></td>
<td>3. Shri V. S. Sampath</td>
</tr>
<tr>
<td></td>
<td>4. Shri G. Bysak</td>
</tr>
<tr>
<td></td>
<td>5. Dr. Ved Prakash</td>
</tr>
<tr>
<td></td>
<td>6. Shri S. K. Roy</td>
</tr>
<tr>
<td>Dr. K. G. Naik Gold Medal by University of Baroda</td>
<td>Dr. T. Banerjee</td>
</tr>
<tr>
<td>Sir Padamji Ginwala Gold Medal by Indian Institute of Metals</td>
<td>Shri S. P. Chakroborty</td>
</tr>
<tr>
<td>Capt. N. N. Dutt Medal by Council of Chemists, India</td>
<td>Shri A. Ghosh</td>
</tr>
<tr>
<td>Distinguished Alumnus Award of Banaras Hindu University, Department of Metallurgical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Shri P. I. A. Narayanan</td>
</tr>
<tr>
<td></td>
<td>2. Dr. B. R. Nijhawan</td>
</tr>
<tr>
<td></td>
<td>3. Prof. V. A. Altekar</td>
</tr>
<tr>
<td></td>
<td>4. Shri R. M. Krishnan</td>
</tr>
<tr>
<td></td>
<td>5. Dr. R. Kumar</td>
</tr>
</tbody>
</table>
Staff Members (Past and Present) Who Received Doctorate Degrees, Submitted Thesis and Registered for Submission of Thesis on The Basis of the Work at NML

A. Received Doctorate Degree

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. P. L. Ahujha</td>
</tr>
<tr>
<td>2.</td>
<td>Dr. S. S. Bhatnagar</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. U. Chatterjee</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. N. Dhananjayan</td>
</tr>
<tr>
<td>5.</td>
<td>Dr. R. K. Dubey</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. R. V. Hargave</td>
</tr>
<tr>
<td>7.</td>
<td>Dr. A. K. Lahiri</td>
</tr>
<tr>
<td>8.</td>
<td>Dr. G. Mishra</td>
</tr>
<tr>
<td>9.</td>
<td>Dr. S. P. Mishra</td>
</tr>
<tr>
<td>10.</td>
<td>Dr. J. K. Mukherjee</td>
</tr>
<tr>
<td>11.</td>
<td>Dr. A. K. Nayak</td>
</tr>
<tr>
<td>12.</td>
<td>Dr. P. K. Panda</td>
</tr>
<tr>
<td>13.</td>
<td>Dr. P. Prabhakaram</td>
</tr>
<tr>
<td>14.</td>
<td>Dr. Ved Prakash</td>
</tr>
<tr>
<td>15.</td>
<td>Dr. T. V. Prasad</td>
</tr>
<tr>
<td>16.</td>
<td>Dr. M. R. K. Rao</td>
</tr>
<tr>
<td>17.</td>
<td>Dr. S. Roy</td>
</tr>
<tr>
<td>18.</td>
<td>Dr. Inder Singh</td>
</tr>
<tr>
<td>19.</td>
<td>Dr. Manjit Singh</td>
</tr>
<tr>
<td>20.</td>
<td>Dr. Khalaf</td>
</tr>
<tr>
<td>21.</td>
<td>Dr. Shariff</td>
</tr>
<tr>
<td>22.</td>
<td>Dr. B. P. Varma</td>
</tr>
</tbody>
</table>

20. Dr. Khalaf Scientists from United Arab Republic under the Scientific and
21. Dr. Shariff Technical Co-operation Agreement between Govts of India and United Arab Republic

B. Submitted Thesis

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shri R. Haider</td>
</tr>
</tbody>
</table>

C. Registered for Submission of Thesis

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mrs. A. Bahadur</td>
</tr>
<tr>
<td>2.</td>
<td>Shri M. K. Banerjee</td>
</tr>
<tr>
<td>3.</td>
<td>Shri Salil Kumar Banerjee</td>
</tr>
<tr>
<td>4.</td>
<td>Shri U. C. Bhakta</td>
</tr>
<tr>
<td>5.</td>
<td>Shri B. K. Saxena</td>
</tr>
<tr>
<td>6.</td>
<td>Shri Narinder Singh</td>
</tr>
<tr>
<td>7.</td>
<td>Shri A. V. Subhramaniam</td>
</tr>
</tbody>
</table>
EXPENDITURE OF NML
(FIGURES IN LAKHS OF RUPEES).

T — TOTAL
R — RECURRING
C — CAPITAL
P — PILOT PLANT
S — STAFF QUARTER

T 25.14 53.22 84.18 87.82 154.77
R 12.0 23.75 29.75 20.96 19.28
C 5.14 5.24 5.81 7.91 3.50
P 18.55 5.66 14.5 2.73 3.50
S 10.0 0.0 0.0 0.0 0.0

RUPEES IN LAKHS
Research and Investigation Reports Prepared

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>12</td>
<td>1951</td>
<td>4</td>
</tr>
<tr>
<td>1952</td>
<td>6</td>
<td>1952</td>
<td>10</td>
</tr>
<tr>
<td>1953</td>
<td>9</td>
<td>1953</td>
<td>14</td>
</tr>
<tr>
<td>1954</td>
<td>13</td>
<td>1954</td>
<td>20</td>
</tr>
<tr>
<td>1955</td>
<td>17</td>
<td>1955</td>
<td>33</td>
</tr>
<tr>
<td>1956</td>
<td>25</td>
<td>1956</td>
<td>22</td>
</tr>
<tr>
<td>1957</td>
<td>10</td>
<td>1957</td>
<td>12</td>
</tr>
<tr>
<td>1958</td>
<td>5</td>
<td>1958</td>
<td>29</td>
</tr>
<tr>
<td>1959</td>
<td>8</td>
<td>1959</td>
<td>31</td>
</tr>
<tr>
<td>1960</td>
<td>8</td>
<td>1960</td>
<td>22</td>
</tr>
<tr>
<td>1961</td>
<td>10</td>
<td>1961</td>
<td>32</td>
</tr>
<tr>
<td>1962</td>
<td>9</td>
<td>1962</td>
<td>30</td>
</tr>
<tr>
<td>1963</td>
<td>17</td>
<td>1963</td>
<td>25</td>
</tr>
<tr>
<td>1964</td>
<td>32</td>
<td>1964</td>
<td>50</td>
</tr>
<tr>
<td>1965</td>
<td>38</td>
<td>1965</td>
<td>42</td>
</tr>
<tr>
<td>1966</td>
<td>17</td>
<td>1966</td>
<td>51</td>
</tr>
<tr>
<td>1967</td>
<td>9</td>
<td>1967</td>
<td>47</td>
</tr>
<tr>
<td>1968</td>
<td>12</td>
<td>1968</td>
<td>48</td>
</tr>
<tr>
<td>1969</td>
<td>12</td>
<td>1969</td>
<td>57</td>
</tr>
<tr>
<td>1970</td>
<td>13</td>
<td>1970</td>
<td>59</td>
</tr>
<tr>
<td>1971</td>
<td>16</td>
<td>1971</td>
<td>33</td>
</tr>
<tr>
<td>1972</td>
<td>15</td>
<td>1972</td>
<td>63</td>
</tr>
<tr>
<td>1973</td>
<td>17</td>
<td>1973</td>
<td>51</td>
</tr>
<tr>
<td>1974</td>
<td>12</td>
<td>1974</td>
<td>54</td>
</tr>
</tbody>
</table>

Papers Published and Presented

<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Year</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951—52</td>
<td>14</td>
<td>1963—64</td>
<td>35</td>
</tr>
<tr>
<td>1952—53</td>
<td>20</td>
<td>1964—65</td>
<td>93</td>
</tr>
<tr>
<td>1953—54</td>
<td>18</td>
<td>1965—66</td>
<td>99</td>
</tr>
<tr>
<td>1954—55</td>
<td>20</td>
<td>1966—67</td>
<td>82</td>
</tr>
<tr>
<td>1955—56</td>
<td>24</td>
<td>1967—68</td>
<td>80</td>
</tr>
<tr>
<td>1956—57</td>
<td>36</td>
<td>1968—69</td>
<td>62</td>
</tr>
<tr>
<td>1957—58</td>
<td>28</td>
<td>1969—70</td>
<td>53</td>
</tr>
<tr>
<td>1958—59</td>
<td>27</td>
<td>1970—71</td>
<td>72</td>
</tr>
<tr>
<td>1959—60</td>
<td>54</td>
<td>1971—72</td>
<td>111</td>
</tr>
<tr>
<td>1960—61</td>
<td>59</td>
<td>1972—73</td>
<td>88</td>
</tr>
<tr>
<td>1961—62</td>
<td>50</td>
<td>1973—74</td>
<td>83</td>
</tr>
<tr>
<td>1962—63</td>
<td>35</td>
<td>1974—75</td>
<td>80</td>
</tr>
</tbody>
</table>
PAPERS PUBLISHED AND PRESENTED

NUMBER
Sale Value of NML Products and Total Royalty Earned

<table>
<thead>
<tr>
<th>Year</th>
<th>Sale Value (Rs.)</th>
<th>Total Royalty Earned (Rs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1964-65</td>
<td>16,300</td>
<td>410</td>
</tr>
<tr>
<td>1965-66</td>
<td>3,63,000</td>
<td>13,000</td>
</tr>
<tr>
<td>1966-67</td>
<td>8,15,000</td>
<td>29,000</td>
</tr>
<tr>
<td>1967-68</td>
<td>22,67,000</td>
<td>64,000</td>
</tr>
<tr>
<td>1968-69</td>
<td>25,29,000</td>
<td>70,000</td>
</tr>
<tr>
<td>1969-70</td>
<td>29,40,000</td>
<td>83,000</td>
</tr>
<tr>
<td>1970-71</td>
<td>74,19,000</td>
<td>2,97,000</td>
</tr>
<tr>
<td>1971-72</td>
<td>1,42,00,000</td>
<td>3,71,000</td>
</tr>
<tr>
<td>1972-73</td>
<td>1,10,91,000</td>
<td>2,86,000</td>
</tr>
</tbody>
</table>

NML Processes and Products Under Commercial Implementation

A. Processes Under Production

Process

1. Improved carbon bonded graphite crucibles

 Name of the Licencsee

 i) M/s. Patna State Graphite & Mining Co. Ltd., Titilagarh, Orissa.

 ii) M/s. Mattapalli Satyam & Sons Samalkot, Andhra Pradesh (likely to commence production shortly).

 iii) M/s. Silcarb Crucibles (P) Ltd. Vapi Industrial Estate, Vapi Gujarat State. (Released in 1973). The plant is expected to commence production at the earliest.

2. Improved clay-bonded graphite crucibles

 Name of the Licencsee

 ii) M/s. Patna State Graphite & Mining Co. Ltd., Titilagarh.

 iii) M/s. J. D. Jones & Co. (Bihar) Ltd., Jamshedpur.
RECEIPTS OF NML
(Figures in lakhs of rupees)

1960-61: 0.046
1965-66: 0.024
1970-71: 0.109
1973-74: 0.072

Sale of products produced at NML
Receipts against investigations
Sale of publications
3. Carbon free ferro-alloys
 i) M/s. Electric Control Gear Pvt. Ltd., Ahmedabad
 ii) M/s. Saindas Kishan Chand Mehra, Amritsar
 iii) M/s. R. Sen & Co., Calcutta
 iv) M/s. T. K. Industries, Kurukshetra
 v) M/s. Industrial Minerals & Chemical Co. Ltd., Bombay
 vi) M/s. Stemet Alloys Ltd., New Delhi
 vii) M/s. Bharat Pulvenishing Mills Ltd., Bombay

4. Hot-dip aluminising of ferrous materials
 i) M/s. Sri Venkata Durga Aluminising Works Ltd., Nandigama, AP (Aluminised wires)

5. Fluxes for submerged arc welding
 M/s. Tapadia Engineers & Traders Ltd., Raipur

6. Bright nickel plating salt
 M/s. Dunlop India Ltd., Calcutta

7. Electrical resistance alloys for heating elements
 M/s. Cable Works (I) Ltd., Calcutta

8. Metal powders by atomization (i) of molten metals
 (Al & Zinc-60 to +200 mesh size)
 ii) M/s. Sinterfine Metal Powders, Delhi

9. Electric grade aluminium alloy
 i) M/s. Aluminium Cables & Conductor Ltd., Calcutta
 ii) M/s. Bharati Smelting & Refining Corporation, Worli, Bombay, to commence production shortly
 iii) M/s. Galada Continuous Castings Ltd., Uppal, Hyderabad

10. Production of sponge iron with solid reductant
 M/s. Andhra Cement Co., Vijaywada

11. Production of ferro-vanadium
 M/s Mysore Iron & Steel Works, Bhadravati

B. Processes Released and Production to Commence

1. Thermostatic bi-metals
 M/s. Cable Works (I) Ltd., Calcutta

2. Ceramic magnets
 M/s. Tapadia Engineers & Traders Pvt. Ltd., Raipur

3. Electrolytic manganese dioxide
 M/s. T. K. Chemicals, Bombay

4. Production of extra fine zinc dust
 M/s. Associated Pigments Ltd., Calcutta (under installation)
 i) M/s. Mehra Ferro Alloys Ltd., Amritsar
 ii) M/s. Kartar Iron & Steel Co., Ltd., Jammu
 iii) M/s. Pratap Steels Ltd., Mahindra Garh, Amritsar (awaiting Govt. of India's clearance)

5. Basic lined side blown converter

6. Bi-metallic powders by atomization
 M/s. Paras Metal Powders, Nasik

7. Extra-fine non-ferrous metal powders by atomisation
 M/s. NALCO Metal Products Ltd., Madurai.
Priced Publications

NML Technical Journal—a Quarterly Publication

Proceedings of Symposia and Seminars on

Electroplating and Metal Finishing
Industrial Failure of Engineering Metals and Alloys
Non-ferrous Metal Industry in India
Recent Trends in the Field of Production, Practice and Research Refractories used in Metal Industries
Production, Properties and Application of Alloy and Special Steel
Mineral Beneficiation and Extractive Metallurgical Techniques
Recent Developments in Foundry Technology
Iron and Steel Industry in India
Pilot Plants in Metallurgical Research and Development
Ferro Alloy Industry in India
Light Metal Industry in India
Utilization of Metallurgical Wastes
Micro Metallurgy—the role of minute additions to ferrous and non-ferrous metals and alloys
Metallurgy of Substitute Ferrous and Non-ferrous Alloys
Non-Ferrous Metals Technology (Vols. 1, 2 & 3)
Science and Technology of Sponge Iron and its Conversion to Steel
Bacterial Leaching

* * * * * * *

Monographs on

Low Grade Manganese Ores of India
Austenitic Grain Size Control of Steel
Foundry Moulding Sands
Indian Foundry Bentonite Clays
Structure of Electro-deposited Manganese
Atlas on Transformation Diagrams of Low Alloy Steels

* * * * * * *

Documented Survey on Metallurgical Developments—A monthly publication
<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Title</th>
<th>Patent No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A process for the hot-dip aluminising of ferrous materials</td>
<td>55289</td>
</tr>
<tr>
<td>2.</td>
<td>Aluminising of iron and steel</td>
<td>57938</td>
</tr>
<tr>
<td>3.</td>
<td>Refractory compositions comprising graphite and silicon carbide</td>
<td>58869</td>
</tr>
<tr>
<td>4.</td>
<td>New stainless steels and methods of preparing them</td>
<td>61978</td>
</tr>
<tr>
<td>5.</td>
<td>Improvements in or relating to hot-dip aluminising of steel</td>
<td>61979</td>
</tr>
<tr>
<td>6.</td>
<td>Refractory compositions comprising graphite and aluminosilicate materials and glazes to render such compositions resistant to oxidation</td>
<td>61980</td>
</tr>
<tr>
<td>7.</td>
<td>An improved method for the production of chromium-manganese alloys by aluminothermic reaction</td>
<td>65231</td>
</tr>
<tr>
<td>8.</td>
<td>Compositions and methods of making welding flux</td>
<td>68171</td>
</tr>
<tr>
<td>9.</td>
<td>Improvements in or relating to the production of copper powder by electrolytic process</td>
<td>76997</td>
</tr>
<tr>
<td>10.</td>
<td>Improvements in or relating to electro-deposition of metals particularly manganese by direct current electrolysis of aqueous solution containing metal ions</td>
<td>81402</td>
</tr>
<tr>
<td>11.</td>
<td>Improvements in or relating to magnesite refractories</td>
<td>83652</td>
</tr>
<tr>
<td>12.</td>
<td>Improvements in or relating to electrolytic cells</td>
<td>84670</td>
</tr>
<tr>
<td>13.</td>
<td>Improvement in or relating to a precision temperature controller for use with electrical resistance furnaces up to 1600°C</td>
<td>91134</td>
</tr>
<tr>
<td>14.</td>
<td>An improved device for the isolation of dross in molten metallic baths during continuous hot-dip processing of strip or wire</td>
<td>94768</td>
</tr>
<tr>
<td>15.</td>
<td>An improved device for the continuous hot-dip coating of metallic strip and wire</td>
<td>94769</td>
</tr>
<tr>
<td>16.</td>
<td>A method for recovery of metallic values from their waste metallic fines particularly zinc and aluminium fines.</td>
<td>102483</td>
</tr>
<tr>
<td>17.</td>
<td>A pneumatic process for the conversion of phosphoric pig irons to steels</td>
<td>105895</td>
</tr>
<tr>
<td>18.</td>
<td>Stable castable suspensions of non-plastic aluminosilicate materials and method of making the same</td>
<td>107982</td>
</tr>
<tr>
<td>19.</td>
<td>Chemically bonded forsterite refractories and methods of their production</td>
<td>108583</td>
</tr>
<tr>
<td>20.</td>
<td>Improvements in or relating to the production of fluoboric acid</td>
<td>110834</td>
</tr>
<tr>
<td>21.</td>
<td>Improvements in or relating to welding flux compositions and methods for making the same</td>
<td>114500</td>
</tr>
<tr>
<td>22.</td>
<td>An improved and modified process for the manufacture of ferrite magnets</td>
<td>116520</td>
</tr>
<tr>
<td>23.</td>
<td>A process for stabilisation of ferro-silicon</td>
<td>118916</td>
</tr>
<tr>
<td>24.</td>
<td>A process for production of electro deposited manganese dioxide containing iron</td>
<td>118982</td>
</tr>
<tr>
<td>Serial No.</td>
<td>Title</td>
<td>Patent No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>25.</td>
<td>Development in or relating to the production of aluminium alloy anodes for cathodic protection</td>
<td>119950</td>
</tr>
<tr>
<td>26.</td>
<td>Manufacture of pig iron and similar products and stack furnace therefor</td>
<td>125548</td>
</tr>
<tr>
<td>27.</td>
<td>An improved method for the removal of vanadium from vanadium pig iron</td>
<td>126062</td>
</tr>
<tr>
<td>28.</td>
<td>Improvements in or relating to preparation of powdered iron</td>
<td>12907</td>
</tr>
<tr>
<td>29.</td>
<td>A simple heat exchanger for pre-heating the air in cupola</td>
<td>131823</td>
</tr>
<tr>
<td>30.</td>
<td>A process for selective reduction of iron oxide in complex ores</td>
<td>131607</td>
</tr>
<tr>
<td>31.</td>
<td>A process for production of sponge iron</td>
<td>131637</td>
</tr>
<tr>
<td>32.</td>
<td>An improved method relating to the extraction of nickel and cobalt values from oxidised (lateritic) ores.</td>
<td>131685</td>
</tr>
<tr>
<td>33.</td>
<td>Fe-Ti alloys—new high hardness materials</td>
<td>133700</td>
</tr>
<tr>
<td>34.</td>
<td>Improvements in or relating to the preparation of pellets containing carbonate ores and carbonaceous materials</td>
<td>134377</td>
</tr>
<tr>
<td>35.</td>
<td>Improvements in or relating to prevention of tranishing of copper and copper base alloys</td>
<td>135030</td>
</tr>
<tr>
<td>36.</td>
<td>Improvements in or relating to plating on steels with a fine layer of metallic chromium and chromium oxide</td>
<td>135213</td>
</tr>
<tr>
<td>37.</td>
<td>An improved method for the extraction of metals from solution by solid state absorption</td>
<td>1719/72</td>
</tr>
<tr>
<td>38.</td>
<td>A process to coat steel surfaces with vinyl compositions and the products thus coated</td>
<td>2168/72</td>
</tr>
<tr>
<td>39.</td>
<td>A process and equipment for producing sponge iron</td>
<td>670/Cal/73</td>
</tr>
<tr>
<td>40.</td>
<td>Improvements in or relating to non-sludge forming zinc phosphating composition</td>
<td>2247/Cal/73</td>
</tr>
<tr>
<td>41.</td>
<td>Improvements in or relating to the manufacturing process of versatile aluminium alloy/aluminium conductor for multifarious electrical applications</td>
<td>Cal/2042/73</td>
</tr>
<tr>
<td>42.</td>
<td>Improvements in or relating to removal of phosphorus and iron from fluor spar</td>
<td>2614/Cal/73</td>
</tr>
<tr>
<td>43.</td>
<td>A device for the position control of the electrodes of electric furnace</td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td>Improvements in or relating to production of soluble granules used in making cellular metal</td>
<td>1549/Cal/74</td>
</tr>
<tr>
<td>45.</td>
<td>Improvements in or relating to recovery of selenium from copper refinery slimes</td>
<td>2109/Cal/74</td>
</tr>
<tr>
<td>46.</td>
<td>A process to coat aluminium surfaces with vinyl compositions and the products thus coated</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Extraction of nickel and cobalt values from lateritic and limonitic nickeliferous ores by coal reduction and ammonical leaching in presence of a catalyst.</td>
<td>284/Cal/74</td>
</tr>
<tr>
<td>48.</td>
<td>Improvements in or relating to recovery of tellurium from copper refining slimes.</td>
<td>Filed</td>
</tr>
</tbody>
</table>
The National Metallurgical Laboratory encourages the social activities for the staff. A well organised NML Club has been formed since 1953. The club conducts various outdoor and indoor games like cricket, football, badminton, volleyball, table tennis, chess, cards etc. and competitive tournaments are organised. The club also participates in various local tournaments. The NML Cricket Club is a recognised team under Bihar Cricket Association and plays in the cricket league. The Laboratory teams also participate in Shanti Swaroop Bhatnagar Memorial Tournament organised by CSIR and have won winners and runners-up trophies in tennis, table tennis and volleyball. Annual sports and picnics are held in which the staff and their family members join. Cinema shows are held regularly for the NML staff and their families.

Two Kindergarten Schools for the NML colony children at Agrico and Tuiladungari colonies have been established. The Welfare Committees of these two colonies look after the security and cleanliness of the colonies and organise cultural shows, sports etc. Arts and music classes are held for the boys, girls and ladies of the colony.

NML staff Cooperative Credit Society is operating for more than a decade and is handling transactions worth nearly rupees two lakhs annually. The Staff Co-operative Stores is supplying rations, foodstuff, stationery articles to the staff members at controlled rate. A canteen is run by the NML staff and it provides lunch, snacks, tea, coffee etc. at reasonable prices.

For facilitating the banking and postal work of the Laboratory and its staff, the Laboratory has provided accommodation within its premises for functioning of a branch of State Bank of India and a post office.
NML Staff Members donating blood for Blood Bank

Kindergarten School at NML Colony
Mrs. V. A. Altekar donating clothes collected by ladies of NML Staff colonies for the Bihar Flood relief

NML Staff Children in a Sports event
A view of the NML Residential Flats at Agrico Colony
Davy Ashmore India Limited

Proudly announces their association with the National Metallurgical Laboratory towards the development of steel production in Basic-lined Side Blown Converters

Davy offers the Side Blown Converters from 2 M/T to 5 M/T capacity, manufactured to the design and knowhow of Davy-Ashmore International Limited U.K. (formerly Ashmore Benson & Pease)
VERSATILITY PLUS, PERFORMANCE PLUS,

THE ONLY SOLID STATE ULTRASONIC FLAW DETECTOR.

It's little wonder why the railways nabbed our flaw detectors. They set stringent specifications — but our units more than matched them. They carried home the only solid state unit in the country.

Being solid state it's power consumption is as low as 25W. Has high continuous performance (you can run it safely for 16 hours a day). You can carry this unit all over the place — it's portable and weighs only 13 kgs.

There is high accuracy when you check for a blow hole, a crack and other flaws. The delay line helps you to detect flaws at a depth of even 10 M. The dead zone is 0.35 cm with a dual probe. The test frequency is from 1.0 MHz to 10 MHz at 6db with a receiver gain of 120 db. You need just one person to operate the entire system. Just walk into one of our offices at Delhi, Bangalore, Calcutta, Bombay or Hyderabad and convince yourself. Or write to us for detailed specifications.

ECIL — where tomorrow is today.

Electronics Corporation of India Ltd.,
Marketing Group, Hyderabad-500 040
Leadership comes naturally to Incab. Ever since its inception in 1920, Incab has spearheaded every significant breakthrough in cable manufacture—adapting to Indian conditions or adopting indigenous raw materials, products and processes.

Incab also set the pace for export of Indian cables to overseas markets. Today Incab's own products find a place in over 30 countries of the world. Not for nothing has Incab been leader of the Indian cable industry for more than 53 years.
Aluminium in our everyday lives. In little things aluminium goes to sea in toothpaste tubes, frigates and into space in bottle closures, and in coins. In larger things like buses and rail coaches. Aluminium in our everyday lives. In little things aluminium goes to sea in toothpaste tubes, frigates and into space in bottle closures, and in coins. In larger things like buses and rail coaches. INDAL leads in aluminium. Aluminium in our everyday lives. In little things aluminium goes to sea in toothpaste tubes, frigates and into space in bottle closures, and in coins. In larger things like buses and rail coaches.

INDAL - most experienced in aluminium

INDIAN ALUMINIUM COMPANY, LIMITED
Your future in Electron Optics...

Will you want to enjoy the benefits of SEM...without any of the worries?

Without question, scanning electron microscopy (SEM) is becoming an indispensable tool in many laboratories.

The trouble is, most SEM's are complicated to operate. Microscopists who really need top performance know how difficult this is to achieve. So they worry... about keeping the field of view on the monitor screen during specimen tilting or rotation...about electron beam contamination...about focus, exposure, contrast and alignment—all of which seem to demand simultaneous attention.

Your worries are over. There's a Philips microscope for you now. The PSEM 500.

This instrument represents, not merely a step, but a long jump into the future of SEM. Its unique eucentric goniometer keeps the field of view on the screen through 360° rotation or 51° tilt.

Movement is controlled 10 times more accurately than with normal differential drives and digital indication enables you to make quantitative measurements.

You focus with one knob—and all other controls are at your fingertips. Vacuum is guaranteed to 10⁻⁷ Torr, so you're always looking at the specimen.

A superb instrument... ahead of its time. Send now for full details.

Tomorrow's Electron Optics...Today!

PHILIPS

PHILIPS INDIA LIMITED Bombay • Calcutta • New Delhi • Madras
a growing range of furnaces for the growing needs of industry

Today GEC-BIRLEC means:
■ Arc Melting Furnaces,
■ Smelting Furnaces,
■ Mains Frequency Coreless Type Induction Melting Furnaces,
■ Medium Frequency Coreless Type Induction Melting Furnaces,
■ Channel Type Holding Furnaces,
■ Calcium Carbide Furnaces,
And more.

■ A complete range for Heat Treatment.
■ Batch Type • Pit Type and
■ Continuous Type Furnaces,
with a matching range of Gas Generators.
We set the electric furnace trend in India.
We now lead it further with over 300 Birlec Furnaces serving industry.

A leading force in furnaces GEC THE GENERAL ELECTRIC COMPANY OF INDIA LIMITED. Furnace Division
TRADE MARKS GEC & BIRLEC PERMITTED USER—THE GENERAL ELECTRIC COMPANY OF INDIA LIMITED.
Our service network extends over an area of 40,00,000 sq. km. and more.

We have a network of factories all over India. Each factory serves industries over a radius of 300 Km. A few more plants are being commissioned and the number of service depots, multiplied.

We go to any length to bring plant production right at your doorstep ... like we did for Tamil Nadu Steels at Arkonam. And we serve the small industries too.

We are committed to progress through increased productivity. That's why we work 24 hours a day throughout the year so that the wheels of your industry keep rolling on, moving towards your goals.

Under our import substitution programme considerable foreign exchange has been saved. Our manufacturing line includes Industrial Oxygen, Dissolved Acetylene, Medical Oxygen, Oxygen Therapy Equipment, Welding Equipment, Consumables and Accessories.

We have now gone into commercial production of Nitrogen, so essential for the Fertiliser Industry, Cold Storage, Space Rocketry, etc., and are looking ahead for fresh avenues of growth.

Asiatic Oxygen — breath to the nation's industry

Asiatic Oxygen

8. B. B. D. BAGH (EAST) CALCUTTA-700001
PHONE : 23-5801, 23-5831, 23-2908 TELEX : CA-7119
SAMPLING - A RECOGNISED ESSENTIAL IN QUALITY CONTROL

Acceptance or Rejection of a product depends upon the Reliability of the sample.

PIioneer Automatic Samplers

Utmost RELIABILITY for Continuous or Intermittent Operation for

- Ores & Minerals
- Coal
- Grains & Seeds
- Fertilizers
- Chemicals & Paints
- Food products
- Cement
- Oil
- Refractories & Ceramics and other wet/dry applications.

FEATURES:
- Simple, Dependable and Accurate.
- Standard, Heavy and Extra Heavy Duty types.
- Timers-incremental Sampling.
- Special cutter design for custom built applications.

Also Complete Sampling System incorporating Primary Sampling, Crushing and Secondary Sampling & Conveying.

Pioneer Equipment Co. Pvt. Ltd.
432 Padra Road, Baroda-390005.
Bombay • Calcutta • Madras
Coming of age in the world of steel poses problems, parents can not solve.

Take, for instance, 15-year old MECON, who is leading India to total independence in her consultancy-engineering and design facilities for the metallurgical industry. In achieving this, MECON faced problems that aren't likely to happen to any other adolescent. Problems like varying raw material composition, the need for maximum indigenisation of steel plant equipment... But MECON had the determination to grow and experts from advanced nations to guide. And today, it has matured into an independent body, capable of satisfying the entire needs of India's metallurgical industry - from conception to commissioning.

To MECON, problems are a part of growing up.

Metallurgical & Engineering Consultants (India) Ltd.
Head Office: Ranchi 834 002, Bihar, India
Regional Office: 14/3 Nrupathunga Road, Bangalore 560 002
Our Aim

Self-reliance in Technology

CMDC has engineered ten projects based on
Indian Technology

We have expertise in:

* Nickel and Cobalt extraction
* Zinc from Zinc Ash/Dross
* Copper by Hydrometallurgy
* Silicon and Calcium Carbide
* Chrome Chemicals

For complete engineering services
contact:

CHEMICAL & METALLURGICAL DESIGN COMPANY LIMITED

A-60, KAILASH, NEW DELHI - 110048

Telephone: 629471 (5 lines) Grams: 'CHEMMETALS'
Telex 031-2742

Branch Office: 35A Southern Avenue, Calcutta 700 029

Telephone: 469656 Grams: 'BASTUKAR'
FACOR

THE LARGEST PRODUCERS OF FERRO ALLOYS IN INDIA

OFFER FROM READY STOCK

FERRO MANGANESE LOW CARBON FERRO CHROME
SILICO MANGANESE HIGH CARBON FERRO CHROME
MAGNESIUM FERRO SILICON SILICO CHROME
HIGH MANGANESE SLAG FERRO SILICON

AND

CHROME ORE

FERRO ALLOYS CORPORATION LIMITED

SHREERAM BHAWAN TUMSAR (MAHARASHTRA)

CABLE FACOR PHONE: 205 251 305 TELEX: 013-278

WORKS
SHREERAM NAGAR (A.P.)
PIN CODE: 532101
GRAMS: FACOR
PHONE: 29, 38 (GARIVIDI)

BRANCHES
BOMBAY, CALCUTTA
DELHI MADRAS
HYDERABAD VISAKHAPATNAM
NAGPUR, BHUBANESWAR

FACOR

THE QUALITY PRODUCERS
WE SUPPLY HOT ROLLED AND FORGED ALLOY, TOOL AND SPECIAL STEEL PRODUCTS IN HEAT TREATED, PEELED, CENTRELESS GROUND CONDITIONS IN ROUNDs, WIRE ROD COILS, SQUARES, HEXAGONS, FLATS AND BILLETS TAILORED TO CUSTOMER REQUIREMENTS. WE HAVE PERFECTED KEY METALLURGICAL FACTORS AND DELIVER QUALITY PRODUCTS WITH CONSISTENT CHEMICAL AND METALLURGICAL CHARACTERISTICS EXACTLY TO YOUR SPECIFICATIONS—THE DIMENSIONS YOU WANT—THE ANALYSIS YOU NEED AND THE METALLURGICAL CHARACTERISTICS YOUR END USE REQUIRE.

BIHAR ALLOY STEELS LTD.

TECHNOLOGY OF TOMORROW

INDIA’S MOST MODERN PRODUCERS OF ALLOY, TOOL & SPECIAL STEELS

Regd. & Head Office
Hadley House
Old Hazaribagh Road
Ranchi—834002
Phone: 23111, 23219
Cable: BASL, RANCHI
Telex: BASL RI-223

Works
P.O. Patratu Thermal Power,
Dist: Hazaribagh, Bihar
PIN—829119
Phone: 51 & 73
Cable: BASL Patratu Thermal Power
The Synonym for Industrial Pigments

- Active Lead Suboxide
 The life-giver to Batteries—extra plates per kg.

- Red Lead
 The versatile material going into Batteries, Ceramics and China Glass and best anti-corrosive substance known to mankind.

- Yellow Litharge
 The attractive yellow powder is 'gold' for batteries and the manufacture of chrome colours.

- Zinc Oxide
 The all important pigment for the rubber, paint, pharmaceuticals and cosmetic industries.

- Zinc Dust
 The bluish grey powder whose uses knows no bounds. — The mother of "Hydro Sulphite of Soda".

- Lead Chrome
 The material that imparts its beauty to paints.

ASSOCIATED PIGMENTS LTD.

14, Netaji Subhas Road, Calcutta-1
Gram: "Synoxides" Phone: 22-8912
NATIONAL INSTITUTE OF FOUNDRY AND FORGE TECHNOLOGY

was established in the year 1966 by the Govt. of India with the assistance of UNDP-UNESCO to fulfil the following aims and objectives:

(i) To provide training through short term courses of 2 to 12 weeks duration, long term Advanced Diploma Courses of 18 months duration and Post Graduate Diploma of 24 months duration and also tailor made courses (depending upon the requirement of the industries/institutions.)

(ii) to guide and conduct applied industrial research in collaboration with industries/institutions in the country and provide nation wide Documentation & Information Services in Foundry, Forge and allied fields.

(iii) to cooperate with Educational and other institutions in any part of the world having similar aims and objectives.

In the field of R & D, the institute has undertaken research projects with both public and private sectors such as HSL, HEC, Bokaro Steel Ltd., Bihar Alloys, Patratu etc. NIFFT is also rendering assistance to industries small, medium scale by offering consultancy services and at present 15 consultancy works are in hand.

The institute has so far conducted 42 short term courses and 5 Advanced Diploma courses (18 months duration) in Foundry and Forge Technology. NIFFT has also carried out Post Graduate work in industrial problems leading to Masters and PhD Degree in collaboration with BIT Mesra. Nine Industrial Research projects have been allocated to NIFFT which will be undertaken in collaboration with other industries.

NIFFT is conducting Post Graduate course by research and 12 industries have sponsored their candidates for carrying out Research on their specific industrial problems and the institute has in its credit more than 100 technical papers published in various Indian and foreign journals.

NIFFT is administered through a Board of Governors representing Industry, professional bodies and the Govt. with Shri Ranchor Prasad as Chairman and Dr. S. S. Khanna, Director of the Institute, as Member Secretary.
INTRODUCING ‘PYRITES’

OPENS A NEW CHAPTER IN AGRICULTURAL PROGRAMME OF “USAR” RECLAMATION

USE PYRITES AND RECLAIM YOUR BARREN ‘USAR’ LANDS INTO PRODUCTIVE SOILS

PYRITES—
a) REDUCES ‘pH’ OF THE SOIL
b) REDUCES EXCESS EXCHANGEABLE SODIUM OF THE SOIL
c) CONVERTS UNAVAILABLE PLANT NUTRIENTS TO AVAILABLE FORM
d) IMPROVES BIOLOGICAL, CHEMICAL AND PHYSICAL CONDITIONS OF THE SOIL,

PYRITES ALSO ADDS:
MICRONUTRIENTS LIKE ZINC, IRON, MANGANESE & COPPER

USE PYRITES AFTER SOIL TEST IN RECOMMENDED DOSE

FOR TRADE AND TECHNICAL ENQUIRY, PLEASE CONTACT:
PYRITES, PHOSPHATES & CHEMICALS LIMITED
P. O. AMJORE, DIST. ROHTAS (BIHAR)
Grams: SULPHUR. Phone: Banjari 37
Regd. Office: DEHRI-ON-SONE, ROHTAS 821307 (Bihar)
Grams: SULPHUR. Telephone: DLM 458
WITH BEST COMPLIMENTS FROM:

T. K. CHEMICALS LTD.

429, ARUN CHAMBERS
TARDEO
BOMBAY 400 034
OUR INDUSTRIAL GAS PROJECT UNDER THE NAME & STYLE OF

UTKAL GASES LTD.

AT DHANKANAL, A NOTIFIED BACKWARD AREA IN THE STATE
OF ORISSA WITH A CAPITAL OUTLAY OF Rs. 1.20 CRORES FOR
PRODUCTION OF OXYGEN AND ACETYLENE GASES IN UNDER
IMPLEMENTATION AND LIKELY TO GO INTO PRODUCTION BY
MARCH/APRIL 1976.

WE HAVE NOW TAKEN STEPS TO INSTAL A 100 METRIC TONNES
PER DAY CAPACITY SPONGE IRON PROJECT AT A COST OF
Rs. 1.5 CRORE TO BE LOCATED AT DHANKANAL, A NOTIFIED
BACKWARD AREA IN THE STATE OF ORISSA, WITH THE TECHNI-
CAL KNOW-HOW FROM THE NATIONAL METALLURGICAL
LABORATORY, JAMSHEDPUR AND HOPE TO IMPLEMENT THE
PROJECT BY THE END OF 1976.

R. S. KHEMKA (INVESTMENTS)
PRIVATE LIMITED
P-21/22, RADHA BAZAR STREET
CALCUTTA -1

Phone: 22-2441 Gram: BALAJINTER
WITH BEST COMPLIMENTS FROM:

ALCON

Manufacturers & Exporters of:

PROPERZI ROD, A.C.S.R., ALL ALUMINIUM
CONDUCTORS, BINDING TAPES & WIRES
NML-PM2.

ALUMINIUM CABLES & CONDUCTORS (UP)
PVT. LTD.

Head Office: 2A, SHAKESPEARE SARANI, CALCUTTA - 16.

Gram: ‘STALCOND’ Telex: CA 7950 Phone: 44-9651/2/3/4:3813

Works No. 1

47, Hide Road Extension,
CALCUTTA - 27
Phone: 45-7393

Works No. 2

4, Ahmed Mamooji Street,
LILUAH, HOWRAH
Phone: 66-2780
FECHROME-N — Nickel / Chromium Heating Wire.

OHMALLOY-C — Nickel / Copper Resistance Wire.

OHMALLOY-C — Thermo Couple Wire.

OHMALLOY-D — Compensating Lead Wire for Pt. Rh./Pt. Thermo couple.

OHMALLOY-E — Compensating Lead Wire for Chromel / Alumel Thermo couple.

INTERESTED ACTUAL USERS AND DEALERS MAY PLEASE CONTACT FOR THEIR REGULAR REQUIREMENT

Manufacturers:

M/S. BURJWAL ELECTRICALS

BAHJOI

(DIST. MORADABAD) U.P.

CD 79

WITH BEST COMPLIMENTS FROM:

“HEXAMAR HOUSE”

HEXAMAR

A Well known place for Industrial Minerals of all varieties.

* A House offering well proven Pesticides used in Agriculture and for Health services.

Please contact:

Bharat Pulverising Mills Private Limited

“HEXAMAR HOUSE” 28, Sayani Road BOMBAY - 25.

Tel.: 457281, 457282, 457283 Telegrams: “HEXAMAR” Dadar-Bombay

Branches: MADRAS * NEW DELHI * BHAVNAGAR

* LUCKNOW * GUNTUR
WITH BEST COMPLIMENTS
FROM:

M/S. INDUSTRIAL MINERALS & CHEMICAL CO. (P) LTD.

125, NARAYAN DHURU STREET
NAGDEVI, BOMBAY - 3

Gram: IMCHEL
Telex: 011-4193
Phone: 323721/22/23
322555
321055

WE CONGRATULATE

NATIONAL METALLURGICAL LABORATORY
for the development of
HOT DIP ALUMINISING PROCESS

BHARAT ALUMINISING CORPORATION
Prop.: PREM UDYOG PRIVATE LIMITED
STATION ROAD, VATVA, Dist. AHMEDABAD

the first plant in the country, based on NML process
to produce aluminised sheets & Strips.
Lloyd Insulations (India)

Specialists in:
THERMAL HYDRO ACOUSTIC INSULATIONS and REFRACTORY LINING

Head Office:
‘PUNJ’ HOUSE,
M-13, Connaught Circus
New Delhi -1
Phone No. 44381

Regional Office:
6, Middleton Street,
Calcutta - 16
Phone No: 44-7556

Zonal Office:
4, Contractor’s Area,
Jamshedpur -1
Phone No. 3822

WITH BEST COMPLIMENTS OF:

Upadhaya Valves Mfrs. (P) Ltd.

23A, NETAJI SUBHAS ROAD,
CALCUTTA - 1
Phone: 22-7344
Gram: “VALUBCOM”

Branches: BOMBAY * NAINI (ALLAHABAD)

Works:
1. P-280, BENARAS ROAD,
HOWRAH-5

2. INDUSTRIAL ESTATE GHATKOPAR,
BOMBAY

Phone: 32-4302

Manufacturers of: All sorts of Valves in C.I., C.S., S.S., G.M., Rubber Lined, Lead Lined, Glass Lined Range from 1/2” to 42” dia. & Special Types of Valves as per requirements & Pipes Fittings, Machinery Spares & Structural Works
ROYAL MINERALS & METALS

Royal Building, Kadia Kui, Relief Road, Ahmedabad-1

Manufacturers, Distributors & Dealers:

MINERALS, FERRO ALLOYS, NONFERROUS METALS AND ALLOYS, GRAPHITE ELECTRODES, NIPPLES, STOPPER HEADS, CARBON PRODUCTS, FOUNDRY REQUISITES, REFRACTORIES AND FOUNDRY CHEMICALS

Bombay Office:

376, J. J. Road, Byculla, BOMBAY - 8

Phone: 372750
BEST WISHES TO
ON OCCASION OF ITS SILVER JUBILEE CELEBRATIONS
from
CHEMICALS (India)
20A, CAMAC STREET,
CALCUTTA - 16
PhonE: 44-8838
Gram: ANODEPLANT
Telex: 021-3173
(Manufacturers of Metal Finishing Chemicals & Anodes)
FOR NON-FERROUS METAL POWDERS
ANY GRADE. ANY SPECIFICATION
ALUMINIUM
BRASS
BRONZE
COPPER
ZINC
PYRO-TECHNICS
EXPLOSIVES
PASTE PIGMENT

Please Contact:
NALCO METAL PRODUCTS LTD.
4, Thirumukulam South Street,
MADURAI 625002 South India
Gram: `AUTOCRAFT'
Phone: 22431

Manufacturers and Stockists:
* Wire, Wire Nettings, Fencing,
* Industrial Wire Pannel Cloth,
* Vibrating Screen, Testing Sieves,
* Non-Ferrous Metal & Steels,
* Valves, Cocks & Fittings,
* Casting & Mechanical Job work.

STANDARD METAL COMPANY
Props: B. C. GUIN & CO. (P) LTD.
101, N. S. ROAD
CALCUTTA - 700001
Cable: PERFOSHEET
Phones: 22-5270
22-4542

WITH THE BEST COMPLIMENTS OF:

THE BINANI METAL WORKS LIMITED
103/24/1, FORESHORE ROAD
SIBPUR : HOWRAH (W. B.)
MANUFACTURERS OF NON-FERROUS ALLOYS, CASTINGS,
RESIN CORED SOLDER WIRE, SOLDERS, METAL POWDERS, ETC.

Phone: 67-3511 (12) 67-5268
Telegram: NONFERROUS CALCUTTA
MEGHNA INDUSTRIES PRIVATE LIMITED

Importers & Stockists of:
Scientific Instruments Apparatus
Appliances etc. etc.

Manufacturers of:
M-Brand Laboratory Porcelainware
Laboratory Equipments

22, BIPLABI RASH BEHARI BASU ROAD
CALCUTTA - 700001

Phone: 64437 — 6449
Grams: YESGIRON

GREETINGS

on their

SILVER JUBILEE

to

THE NATIONAL METALLURGICAL LABORATORY

from

M/S. SOUTHERN ALLOY FOUNDRIES (P) LTD.

Specialists in
S. G. Iron (SPHEROIDAL GRAPHITE) Castings
76, G. N. T. ROAD,
Madavaram, MADRAS - 600060
* We are a modern Automobile Body Building Company.

* We build all types of bodies on chassis, Delux & Semi delux bus, District type bus, Mini bus, Ambulance, Truck, Dumper and other Van bodies.

* We have privilege of executing orders of parties beyond the frontiers of India.

* We are cost-conscious and our prices are quite competitive.

WHO ARE WE?

Please see below for the solution of the riddle:—

PARIKH ENGINEERING & BODY BUILDING CO. LTD.

Regd. Office: 8-A, MONALISA, 17, CAMAC STREET, CALCUTTA - 700 016

Factory: ADITYAPUR-KANDRA ROAD, ADITYAPUR, JAMSHEDPUR - 831001
If your industry manufactures best quality products, you want best quality raw-material.

GMDC OFFERS BEST QUALITY FLUORSPAR in Metallurgical & Acid Grades

Forward inquiries and orders to: GUJARAT MINERAL DEVELOPMENT CORPORATION LIMITED (A Government of Gujarat Undertaking) 5th Floor, Natraj Theatre Building, Ashram Road, Ahmedabad-9. Gram: MINCORP Phone: 76375-76-77

SILICA SAND in Various mesh sizes AND Bauxite in Various Grades AND ALSO LIGNITE
INDIAN TUBE

THE INDIAN TUBE COMPANY LIMITED
A TATA-STEWARTS AND LLOYDS ENTERPRISE

Manufacturers of
Tubes and Strip in India.

FROM FEASIBILITY REPORT TO COMMISSIONING...

EIL OFFERS A COMPLETE RANGE OF SERVICES COVERING FEASIBILITY REPORTS, PROJECT REPORTS, PROCESS DEVELOPMENT AND DESIGN, PROJECT MANAGEMENT, DETAILED ENGINEERING, AUXILIARY SERVICES, PROCUREMENT, INSPECTION, EXPEDITING, CONSTRUCTION MANAGEMENT, OPERATIONAL GUIDANCE AND COMMISSIONING.

EIL FIELDS OF ACTIVITY INCLUDE REFINERIES, PETROCHEMICAL & CHEMICAL PLANTS, FERTILIZER PLANTS, SYNTHETIC FIBRE PLANTS, BREWERIES, NON-FERROUS METALLURGY, PIPE LINES, PORTS AND HARBOURS AND OFF SHORE ENGINEERING.

ENGINEERS INDIA LIMITED

4, PARLIAMENT STREET, NEW DELHI - 1.

Telephone: 386171 (20 Lines) Cable: ENGINDIA
A new look reflecting a new outlook

TATA-ROBINS-FRASER LIMITED

Conveyor systems engineers to the nation
WITH THE COMPLIMENTS OF:

TATA STEEL

WITH THE BEST COMPLIMENTS OF:

THE TINPLATE CO. OF INDIA LIMITED, GOLMURI
WITH BEST COMPLIMENTS FROM:

HINDUSTAN STEEL LIMITED

DURGAPUR STEEL PLANT

Durgapur-3 (West Bengal)
WITH COMPLIMENTS OF

WELLMAN INCANDESCENT INDIA LTD.
MANUFACTURERS OF ALL TYPES OF INDUSTRIAL FURNACES AND ALLIED EQUIPMENT
8, HO CHI MINH SARANI, CALCUTTA 700 016

Telephone: 44-1061 (8 lines) Telex: 021-3157
Telegrams: WELLMANS, Calcutta
Hindustan Copper Limited (A Government of India Enterprise) achieved a record production of 15,801 tonnes of copper in 1974-75, a 22.5% increase over the previous year’s production. Copper production which was stagnant at around 9,000 tonnes per annum has, with HCL’s efforts, increased steadily from 1972-73 onwards as the table shows.

(Figures in metric tonnes)

<table>
<thead>
<tr>
<th>March '75</th>
<th>April '74 to March '75</th>
<th>April '73 to March '74</th>
<th>April '72 to March '73</th>
</tr>
</thead>
<tbody>
<tr>
<td>3248</td>
<td>15801</td>
<td>12899</td>
<td>12596</td>
</tr>
</tbody>
</table>

Copper is vital to economic growth. With the increase in production achieved by HCL, we are attempting to increase the country’s self-reliance in this vital sector and to maximise saving of foreign exchange. Simultaneously we are building up indigenous expertise and technology.

We are striving hard to raise copper production at our existing units and to exploit the other proven reserves. Our Flash Smelter at the Khetri Copper Complex in Rajasthan was inaugurated by the Prime Minister, Smt. Indira Gandhi. We are also setting up an acid-cum-fertilizer plant at KCC. At our Indian Copper Complex in Ghatila, Bihar, besides increasing production of copper, we recently started producing SELENIUM, for the first time in the country. We are also marketing Sulphuric Acid produced at this Complex. At Dariba, Rajasthan, we mill ore to be fed into the Khetri Smelter. At Agnigundala in Andhra Pradesh, we have established capacity to produce Lead concentrates.

We hope to complete a 500 tonnes/day ore producing unit in Chandmari near KCC ahead of schedule and also plan to start work soon to exploit the rich open cast reserves at Malanjkhand in Madhya Pradesh.

We are looking ahead, because that’s where we in the public sector are going. We are confident that every step forward helps industrial growth and therefore makes the nation economically stronger and more self reliant.
CONGRATULATE

NATIONAL METALLURGICAL LABORATORY

.....on the occasion of their Silver Jubilee Celebrations.

Dorr-Oliver are proud of their association and contribution to the Indian Metallurgical Industry, having supplied large numbers of Galigher Agitair Flotation Cells, Dorrclones, Rotary Drum Filters, Rotary Disc Filters, Thickeners, Vertical Sump Pumps, Wilfley Centrifugal Pumps and a host of other equipment for solids-liquid handling.

Dorr-Oliver equipment are products of world wide engineering, research and development.

DORR-OLIVER (INDIA) LIMITED.

‘The International’, 16, Queen’s Road Estate, BOMBAY - 400 020.
‘Dorr-Oliver House’, Link Road, Chakala, Andheri (East), BOMBAY - 400 093.
‘Dorr-Oliver’, 15, Marshalls Road, Egmore, MADRAS - 600 008.
6A, Ring Road, Lajpat Nagar IV, New Delhi - 110 024.
Separating the good from the bad, the precious from the rubble

Mineral Beneficiation Plants by McNally Bharat

Iron or copper, lead or zinc, fluor spar or phosphate—whatever the mineral ore, McNally Bharat has the complete ‘knowhow’ for extracting the utmost value from it.

During the last few years, MBE has built four of the country’s largest ore dressing plants: the first Indian-designed mineral beneficiation plant was built for Gujarat Mineral Development Corp. for upgrading 500 tonnes of fluor spar ore per day to high purity concentrates; then followed a 2000 TPD Lead Zinc Concentrator for Hindustan Zinc Limited, a 2000 TPD Copper Concentrator for Hindustan Copper Limited and a 500 TPD Copper Concentrator for Chitrardurga Copper Company.

The successful operation of these MBE-built plants marks a giant step towards self-sufficiency in technology in a most vital sector of the economy.

MBE will soon start the construction of another 2000 TPD Concentrator at the Balaria Mines of Hindustan Zinc Limited as part of their expansion programme.

2000 TPD Lead Zinc Concentrator at Zawar Mines in Rajasthan.

McNally Bharat
ENGINEERING COMPANY LIMITED
KUMARDHUBI 828203, DIST. DHANBAD, BIHAR
DESIGN FOR PROGRESS

Steel spells progress and steel plants are changing the face of India. Modern temples, Pandit Nehru called them.

Dasturs design the plants that make and shape steel. Plants large and small, to produce steel of diverse types—using Indian raw materials, with Indian know-how, tailored to suit individual requirements.

Dasturs are in the forefront of steel plant design and technology—pelletizing, direct reduction, OBM steelmaking, electric arc steelmaking, continuous casting etc. As in India, they are also actively planning steel development in South East Asia, West Asia, Africa and Latin America.

M. N. DASTUR & COMPANY (P) LIMITED
CONSULTING ENGINEERS CALCUTTA